Cho tam giác nhọn ABC nội tiếp đường tròn (O). Biết (widehat {BOC} = {140^o}), hỏi số đo của góc BAC bằng bao nhiêu? A. (widehat {BAC} = {70^o}). B. (widehat {BAC} = {140^o}). C. (widehat {BAC} = {40^o}). D. (widehat {BAC} = {80^o}).
Những khẳng định nào sau đây là đúng? a) Hai góc nội tiếp bằng nhau thì chắn cùng một cung. b) Góc nội tiếp nhỏ hơn ({90^o}) có số đo bằng nửa số đo của góc ở tâm chắn cùng một cung. c) Góc nội tiếp chắn cung nhỏ có số đo bằng số đo của góc ở tâm chắn cùng một cung. d) Hai góc nội tiếp bằng nhau thì chắn hai cung bằng nhau.
Cho các điểm như hình bên. Tính số đo các góc của tam giác ABC, biết rằng (widehat {AOB} = {120^o},widehat {BOC} = {80^o}).
Cho đường tròn (O) và hai dây cung AC, BD cắt nhau tại X như hình bên. Tính số đo góc AXB biết rằng (widehat {ADB} = {30^o},widehat {DBC} = {50^o}).
Cho đường tròn (O) và hai dây cung AB, CD cắt nhau tại điểm I nằm trong (O) như hình bên. a) Biết rằng (widehat {AOC} = {60^o},widehat {BOD} = {80^o}). Tính số đo của góc AID. b) Chứng minh rằng (IA.IB = IC.ID).
Cho đường tròn (O), đường kính AB và điểm S nằm ngoài (O). Cho hai đường thẳng SA, SB lần lượt cắt (O) tại M (khác A), N (khác B). Gọi P là giao điểm của BM và AN như hình bên. Chứng minh rằng SP vuông góc với AB.
Trên sân bóng, khi quả bóng được đặt tại điểm phạt đền thì có góc sút bằng ({36^o}) và quả bóng cách mỗi cọc gôn 11,6m như hình dưới đây. Hỏi khi quả bóng đặt ở vị trí cách điểm phạt đền 11,6m thì góc sút bằng bao nhiêu?
Cho các điểm A, B, C, D trên đường tròn (O) như hình bên. Biết rằng CD là đường kính của (O) và (widehat {BOC} = {120^o}), hãy tính số đo các góc CAD và CDB.
Cho tam giác nhọn ABC cân tại đỉnh A. Đường tròn đường kính BC cắt các cạnh AB, AC của tam giác ABC lần lượt tại F và E. a) Cho BE cắt CF tại H. Chứng minh rằng AH vuông góc với BC. b) Chứng minh rằng EF song song với BC.