Đề kiểm tra 15 phút chương 4: Hàm số y=ax^2-Phương trình bậc hai một ẩn - Đề số 2
Đề bài
Chọn khẳng định đúng. Nếu phương trình $a{x^2} = mx + n$ vô nghiệm thì đường thẳng $d:y = mx + n$ và parabol $\left( P \right):y = a{x^2}$
-
A.
Cắt nhau tại hai điểm
-
B.
Tiếp xúc với nhau
-
C.
Không cắt nhau
-
D.
Cắt nhau tại gốc tọa độ
Phương trình ${x^4} - 6{x^2} - 7 = 0$ có bao nhiêu nghiệm?
-
A.
$0$
-
B.
$1$
-
C.
$2$
-
D.
$4$
Số giao điểm của đường thẳng $d:y = 2x + 4$ và parabol $\left( P \right):y = {x^2}$ là:
-
A.
$2$
-
B.
$1$
-
C.
$0$
-
D.
$3$
Phương trình \({\left( {x + 1} \right)^4} - 5{\left( {x + 1} \right)^2} - 84 = 0\) có tổng các nghiệm là
-
A.
$ - \sqrt {12} $
-
B.
$ - 2$
-
C.
$ - 1$
-
D.
$2\sqrt {12} $
Tích các nghiệm của phương trình \({\left( {{x^2} + 2x - 5} \right)^2} = {\left( {{x^2} - x + 5} \right)^2}\) là:
-
A.
$\dfrac{{10}}{3}$
-
B.
$0$
-
C.
$\dfrac{1}{2}$
-
D.
$\dfrac{5}{3}$
Phương trình \(\left( {\dfrac{{1 + x}}{{1 - x}} - \dfrac{{1 - x}}{{1 + x}}} \right):\left( {\dfrac{{1 + x}}{{1 - x}} - 1} \right) = \dfrac{3}{{14 - x}}\) có nghiệm là:
-
A.
$x = \sqrt 2 $
-
B.
$x = 2$
-
C.
$x = 3$
-
D.
$x = 5$
Phương trình \(\dfrac{{2x}}{{x - 2}} - \dfrac{5}{{x - 3}} = \dfrac{{ - 9}}{{{x^2} - 5x + 6}}\)có số nghiệm là
-
A.
$2$
-
B.
$1$
-
C.
$0$
-
D.
$3$
Tìm tham số $m$ để đường thẳng $d:y = \dfrac{1}{2}x + m$ tiếp xúc với parabol $\left( P \right):y = \dfrac{{{x^2}}}{2}$
-
A.
$m = \dfrac{1}{4}$
-
B.
$m = - \dfrac{1}{4}$
-
C.
$m = \dfrac{1}{8}$
-
D.
$m = - \dfrac{1}{8}$
Tìm tham số $m$ để đường thẳng $d:y = \left( {m - 2} \right)x + 3m$ và parabol $\left( P \right):y = {x^2}$ cắt nhau tại hai điểm phân biệt nằm hai phía của trục tung.
-
A.
$m < 3$
-
B.
$m > 3$
-
C.
$m > 2$
-
D.
$m > 0$
Tổng các nghiệm của phương trình \(x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) = 8\) là
-
A.
$ - 3$
-
B.
$3$
-
C.
$1$
-
D.
$ - 4$
Lời giải và đáp án
Chọn khẳng định đúng. Nếu phương trình $a{x^2} = mx + n$ vô nghiệm thì đường thẳng $d:y = mx + n$ và parabol $\left( P \right):y = a{x^2}$
-
A.
Cắt nhau tại hai điểm
-
B.
Tiếp xúc với nhau
-
C.
Không cắt nhau
-
D.
Cắt nhau tại gốc tọa độ
Đáp án : C
Đường thẳng $d:y = mx + n$ và parabol $\left( P \right):y = a{x^2}$ không cắt nhau khi phương trình $a{x^2} = mx + n$ vô nghiệm.
Phương trình ${x^4} - 6{x^2} - 7 = 0$ có bao nhiêu nghiệm?
-
A.
$0$
-
B.
$1$
-
C.
$2$
-
D.
$4$
Đáp án : C
Đặt ${x^2} = t\,\left( {t \ge 0} \right)$ ta được phương trình ${t^2} - 6t - 7 = 0$ (*)
Nhận thấy $a - b + c = 1 + 6 - 7 = 0$ nên phương trình (*) có hai nghiệm ${t_1} = - 1\,\,\left( L \right);{t_2} = 7\,\left( N \right)$
Thay lại cách đặt ta có ${x^2} = 7 \Leftrightarrow x = \pm \sqrt 7 $
Vậy phương trình đã cho có hai nghiệm.
Số giao điểm của đường thẳng $d:y = 2x + 4$ và parabol $\left( P \right):y = {x^2}$ là:
-
A.
$2$
-
B.
$1$
-
C.
$0$
-
D.
$3$
Đáp án : A
Bước 1: Giải phương trình hoành độ giao điểm.
Bước 2: Số nghiệm vừa tìm được của phương trình là số giao điểm của đường thẳng và parabol
Xét phương trình hoành độ giao điểm ${x^2} = 2x + 4 \Leftrightarrow {x^2} - 2x - 4 = 0$ có $\Delta ' = 5 > 0$ nên phương trình có hai nghiệm phân biệt hay đường thẳng cắt parabol tại hai điểm phân biệt.
Phương trình \({\left( {x + 1} \right)^4} - 5{\left( {x + 1} \right)^2} - 84 = 0\) có tổng các nghiệm là
-
A.
$ - \sqrt {12} $
-
B.
$ - 2$
-
C.
$ - 1$
-
D.
$2\sqrt {12} $
Đáp án : B
Đặt ${\left( {x + 1} \right)^2} = t\,\left( {t \ge 0} \right)$ ta được phương trình ${t^2} - 5t - 84 = 0$ (*)
Ta có $\Delta = 361$ nên phương trình (*) có hai nghiệm ${t_1} = \dfrac{{5 + \sqrt {361} }}{2} = 12\,\,\left( N \right);{t_2} = \dfrac{{5 - \sqrt {361} }}{2} = - 7\,\left( L \right)$
Thay lại cách đặt ta có ${\left( {x + 1} \right)^2} = 12 \Leftrightarrow x = - 1 \pm \sqrt {12} $
Suy ra tổng các nghiệm là $ - 1 + \sqrt {12} - 1 - \sqrt {12} = - 2$.
Tích các nghiệm của phương trình \({\left( {{x^2} + 2x - 5} \right)^2} = {\left( {{x^2} - x + 5} \right)^2}\) là:
-
A.
$\dfrac{{10}}{3}$
-
B.
$0$
-
C.
$\dfrac{1}{2}$
-
D.
$\dfrac{5}{3}$
Đáp án : B
Sử dụng ${A^2} = {B^2} \Leftrightarrow \left[ \begin{array}{l}A = B\\A = - B\end{array} \right.$
Ta có \({\left( {{x^2} + 2x - 5} \right)^2} = {\left( {{x^2} - x + 5} \right)^2}\)$ \Leftrightarrow \left[ \begin{array}{l}{x^2} + 2x - 5 = {x^2} - x + 5\\{x^2} + 2x - 5 = - {x^2} + x - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = 10\\2{x^2} - x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{10}}{3}\\x = 0\\x = \dfrac{1}{2}\end{array} \right.$
Nên tích các nghiệm là $\dfrac{{10}}{3}.0.\dfrac{1}{2} = 0$
Phương trình \(\left( {\dfrac{{1 + x}}{{1 - x}} - \dfrac{{1 - x}}{{1 + x}}} \right):\left( {\dfrac{{1 + x}}{{1 - x}} - 1} \right) = \dfrac{3}{{14 - x}}\) có nghiệm là:
-
A.
$x = \sqrt 2 $
-
B.
$x = 2$
-
C.
$x = 3$
-
D.
$x = 5$
Đáp án : D
Điều kiện: $x \ne 1;x \ne - 1;x \ne 14$
Ta có \(\left( {\dfrac{{1 + x}}{{1 - x}} - \dfrac{{1 - x}}{{1 + x}}} \right):\left( {\dfrac{{1 + x}}{{1 - x}} - 1} \right) = \dfrac{3}{{14 - x}}\)$ \Leftrightarrow \dfrac{{{{\left( {1 + x} \right)}^2} - {{\left( {1 - x} \right)}^2}}}{{\left( {1 - x} \right)\left( {1 + x} \right)}}:\dfrac{{1 + x - 1 + x}}{{1 - x}} = \dfrac{3}{{14 - x}}$
$ \Leftrightarrow \dfrac{{4x}}{{\left( {1 - x} \right)\left( {1 + x} \right)}}.\dfrac{{1 - x}}{{2x}} = \dfrac{3}{{14 - x}} \Leftrightarrow \dfrac{2}{{x + 1}} = \dfrac{3}{{14 - x}}$$ \Rightarrow 28 - 2x = 3x + 3 \Leftrightarrow 5x = 25 \Leftrightarrow x = 5\,\left( {TM} \right)$
Vậy phương trình có nghiệm $x = 5$
Phương trình \(\dfrac{{2x}}{{x - 2}} - \dfrac{5}{{x - 3}} = \dfrac{{ - 9}}{{{x^2} - 5x + 6}}\)có số nghiệm là
-
A.
$2$
-
B.
$1$
-
C.
$0$
-
D.
$3$
Đáp án : C
Điều kiện: $x \ne 2;x \ne 3$
\(\dfrac{{2x}}{{x - 2}} - \dfrac{5}{{x - 3}} = \dfrac{-9}{{{x^2} - 5x + 6}}\)$ \Leftrightarrow \dfrac{{2x\left( {x - 3} \right) - 5\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{{ - 9}}{{\left( {x - 2} \right)\left( {x - 3} \right)}}$$ \Rightarrow 2{x^2} - 11x + 19 = 0$
Nhận thấy \(\Delta = {11^2} - 4.19.2 = - 31 < 0\) nên phương trình $2{x^2} - 11x + 19 = 0$ vô nghiệm. Suy ra phương trình đã cho vô nghiệm.
Tìm tham số $m$ để đường thẳng $d:y = \dfrac{1}{2}x + m$ tiếp xúc với parabol $\left( P \right):y = \dfrac{{{x^2}}}{2}$
-
A.
$m = \dfrac{1}{4}$
-
B.
$m = - \dfrac{1}{4}$
-
C.
$m = \dfrac{1}{8}$
-
D.
$m = - \dfrac{1}{8}$
Đáp án : D
Bước 1: Xét phương trình hoành độ giao điểm của đường thẳng và parabol
Bước 2: Để đường thẳng tiếp xúc với parabol thì phương trình hoành độ giao điểm có nghiệm kép
Xét phương trình hoành độ giao điểm $\dfrac{{{x^2}}}{2} = \dfrac{1}{2}x + m \Leftrightarrow {x^2} - x - 2m = 0$ có $\Delta = 8m + 1$
Để đường thẳng $d$ tiếp xúc với parabol $\left( P \right)$ thì $\Delta = 0 \Leftrightarrow 8m + 1 = 0 \Leftrightarrow m = - \dfrac{1}{8}$.
Tìm tham số $m$ để đường thẳng $d:y = \left( {m - 2} \right)x + 3m$ và parabol $\left( P \right):y = {x^2}$ cắt nhau tại hai điểm phân biệt nằm hai phía của trục tung.
-
A.
$m < 3$
-
B.
$m > 3$
-
C.
$m > 2$
-
D.
$m > 0$
Đáp án : D
Bước 1: Viết phương trình hoành độ giao điểm (*)
Bước 2: Đường thẳng $d$ cắt $\left( P \right)$ tại hai điểm phân biệt nằm hai phía trục tung $ \Leftrightarrow $ phương trình (*) có hai nghiệm trái dấu$ \Leftrightarrow ac < 0$
Phương trình hoành độ giao điểm ${x^2} = \left( {m - 2} \right)x + 3m $
$\Leftrightarrow {x^2} - \left( {m - 2} \right)x - 3m = 0$
Đường thẳng $d$ cắt $\left( P \right)$ tại hai điểm phân biệt nằm hai phía trục tung
$ \Leftrightarrow $ phương trình (*) có hai nghiệm trái dấu
$ \Leftrightarrow ac < 0$
$ \Leftrightarrow - 3m < 0 \Leftrightarrow m > 0$.
Tổng các nghiệm của phương trình \(x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) = 8\) là
-
A.
$ - 3$
-
B.
$3$
-
C.
$1$
-
D.
$ - 4$
Đáp án : A
Ta có \(x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) = 8\)$ \Leftrightarrow x\left( {x + 3} \right).\left( {x + 1} \right)\left( {x + 2} \right) = 8 \Leftrightarrow \left( {{x^2} + 3x} \right)\left( {{x^2} + 3x + 2} \right) = 8$
Đặt ${x^2} + 3x + 1 = t$ , thu được phương trình $\left( {t - 1} \right)\left( {t + 1} \right) = 8 \Leftrightarrow {t^2} - 1 = 8 \Leftrightarrow {t^2} = 9 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = - 3\end{array} \right.$
+) Với $t = 3 \Rightarrow {x^2} + 3x + 1 = 3 $
$\Leftrightarrow {x^2} + 3x - 2 = 0$ , có $\Delta = 17 \Rightarrow {x_1} = \dfrac{{ - 3 + \sqrt {17} }}{2};$
${x_2} = \dfrac{{ - 3 - \sqrt {17} }}{2}$
+) Với $t = - 3 \Rightarrow {x^2} + 3x + 1 = - 3$
$\Leftrightarrow {x^2} + 3x + 4 = 0$ có $\Delta = - 7 < 0$ nên phương trình vô nghiệm.
Vậy phương trình đã cho có hai nghiệm ${x_1} = \dfrac{{ - 3 + \sqrt {17} }}{2};{x_2} = \dfrac{{ - 3 - \sqrt {17} }}{2}$
Suy ra tổng các nghiệm là $\dfrac{{ - 3 + \sqrt {17} }}{2} + \dfrac{{ - 3 - \sqrt {17} }}{2} = - 3$