Processing math: 47%

Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 1 - Đại số 9 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 8. Rút gọn biểu thức chứa căn bậc hai


Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 1 - Đại số 9

Giải Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 1 - Đại số 9

Đề bài

Bài 1. Tính :

a. 7434+23

b. (1414+12+302+5).521

Bài 2. Chứng minh đẳng thức : 4x+2+2x25x6x4=1x2, với x0x4.

Bài 3. Cho biểu thức : P=(1xx+xx1):xx1xxx

a. Rút gọn P với x>0x1.

b. Tìm x để P=12

Phương pháp giải - Xem chi tiết

Bài 1. Sử dụng A2=|A|

Bài 2, bài 3:  Quy đồng và rút gọn các phân thức.

Lời giải chi tiết

Bài 1. a.

\displaystyle \eqalign{  & \sqrt {7 - 4\sqrt 3 }  - \sqrt {4 + 2\sqrt 3 } \cr& = \sqrt {4 - 2.2\sqrt 3  + 3}  - \sqrt {3 + 2\sqrt 3  + 1} \cr&= \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}}  - \sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}}   \cr  &  = \left| {2 - \sqrt 3 } \right| - \left( {1 + \sqrt 3 } \right) \cr&= 2 - \sqrt 3  - 1 - \sqrt 3 \,\,\left( {vì\,2 > \sqrt 3 } \right)  \cr  &  = 1 - 2\sqrt 3  \cr}

b.

\displaystyle \eqalign{  & \left( {{{14} \over {\sqrt {14} }} + {{\sqrt {12}  + \sqrt {30} } \over {\sqrt 2  + \sqrt 5 }}} \right).\sqrt {5 - \sqrt {21} }   \cr  &  = \left[ {\sqrt {14}  + {{\sqrt 6 \left( {\sqrt 2  + \sqrt 5 } \right)} \over {\sqrt 2  + \sqrt 5 }}} \right].\sqrt {5 - \sqrt {21} }   \cr  &  = \left( {\sqrt {14}  + \sqrt 6 } \right).\sqrt {5 - \sqrt {21} }   \cr  &  = \sqrt 2 \left( {\sqrt 7  + \sqrt 3 } \right).\sqrt {5 - \sqrt {21} }   \cr  &  = \left( {\sqrt 7  + \sqrt 3 } \right).\sqrt {10 - 2\sqrt {21} }   \cr  &  = \left( {\sqrt 7  + \sqrt 3 } \right).\sqrt {{{\left( {\sqrt 7  - \sqrt 3 } \right)}^2}}   \cr  &  = \left( {\sqrt 7  + \sqrt 3 } \right).\left| {\sqrt 7  - \sqrt 3 } \right|  \cr  &  = \left( {\sqrt 7  + \sqrt 3 } \right).\left( {\sqrt 7  - \sqrt 3 } \right)\,\,\left( {\text{ vì }\,\sqrt 7  > \sqrt 3 } \right)  \cr  &  = {\left( {\sqrt 7 } \right)^2} - {\left( {\sqrt 3 } \right)^2} = 4. \cr}

Bài 2. Biến đổi vế trái ta có:

\displaystyle \eqalign{  & {4 \over {\sqrt x  + 2}} + {2 \over {\sqrt x  - 2}} - {{5\sqrt x  - 6} \over {\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 2} \right)}}  \cr  &  = {{4\left( {\sqrt x  - 2} \right) + 2\left( {\sqrt x  + 2} \right) - \left( {5\sqrt x  - 6} \right)} \over {\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}}  \cr  &  = {{4\sqrt x  - 8 + 2\sqrt x  + 4 - 5\sqrt x  + 6} \over {\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}}  \cr  &  = {{\sqrt x  + 2} \over {\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 2} \right)}} = {1 \over {\sqrt x  - 2}} \cr}

Bài 3. a.

\displaystyle \eqalign{  & P = \left( {{1 \over {x - \sqrt x }} + {{\sqrt x } \over {x - 1}}} \right):{{x\sqrt x  - 1} \over {x\sqrt x  - \sqrt x }}  \cr  &  = \left[ {{1 \over {\sqrt x \left( {\sqrt x  - 1} \right)}} + {{\sqrt x } \over {\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}} \right]:{{\sqrt {{x^3}}  - 1} \over {\sqrt x \left( {x - 1} \right)}}  \cr  &  = {{\sqrt x  + 1 + x} \over {\sqrt x \left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}.{{\sqrt x \left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)} \over {\left( {\sqrt x  - 1} \right)\left( {x + \sqrt x  + 1} \right)}} \cr&= {1 \over {\sqrt x  - 1}} \cr}

(với \displaystyle x > 0\displaystyle x ≠ 1)

b. \displaystyle P = {1 \over 2} \Leftrightarrow {1 \over {\sqrt x  - 1}} = {1 \over 2} \Rightarrow \sqrt x  - 1 = 2

\displaystyle \Leftrightarrow \sqrt x  = 3 \displaystyle ⇔ x = 9 (thỏa mãn điều kiện \displaystyle x > 0\displaystyle x ≠ 1)


Cùng chủ đề:

Đề kiểm tra 15 phút - Đề số 6 - Bài 4 - Chương 4 - Đại số 9
Đề kiểm tra 15 phút - Đề số 6 - Bài 5 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 2 - Hình học 9
Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 4 - Đại số 9
Đề kiểm tra 15 phút - Đề số 6 - Bài 7 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 1 - Đại số 9
Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 2 - Hình học 9
Đề kiểm tra 15 phút - Đề số 7 - Bài 1 - Chương 1 - Hình học 9
Đề kiểm tra 15 phút - Đề số 7 - Bài 4 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 7 - Bài 5 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 7 - Bài 6 - Chương 2 - Hình học 9