Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 1 - Đại số 9
Giải Đề kiểm tra 15 phút - Đề số 6 - Bài 8 - Chương 1 - Đại số 9
Đề bài
Bài 1. Tính :
a. √7−4√3−√4+2√3
b. (14√14+√12+√30√2+√5).√5−√21
Bài 2. Chứng minh đẳng thức : 4√x+2+2√x−2−5√x−6x−4=1√x−2, với x≥0 và x≠4.
Bài 3. Cho biểu thức : P=(1x−√x+√xx−1):x√x−1x√x−√x
a. Rút gọn P với x>0 và x≠1.
b. Tìm x để P=12
Phương pháp giải - Xem chi tiết
Bài 1. Sử dụng √A2=|A|
Bài 2, bài 3: Quy đồng và rút gọn các phân thức.
Lời giải chi tiết
Bài 1. a.
\displaystyle \eqalign{ & \sqrt {7 - 4\sqrt 3 } - \sqrt {4 + 2\sqrt 3 } \cr& = \sqrt {4 - 2.2\sqrt 3 + 3} - \sqrt {3 + 2\sqrt 3 + 1} \cr&= \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} - \sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}} \cr & = \left| {2 - \sqrt 3 } \right| - \left( {1 + \sqrt 3 } \right) \cr&= 2 - \sqrt 3 - 1 - \sqrt 3 \,\,\left( {vì\,2 > \sqrt 3 } \right) \cr & = 1 - 2\sqrt 3 \cr}
b.
\displaystyle \eqalign{ & \left( {{{14} \over {\sqrt {14} }} + {{\sqrt {12} + \sqrt {30} } \over {\sqrt 2 + \sqrt 5 }}} \right).\sqrt {5 - \sqrt {21} } \cr & = \left[ {\sqrt {14} + {{\sqrt 6 \left( {\sqrt 2 + \sqrt 5 } \right)} \over {\sqrt 2 + \sqrt 5 }}} \right].\sqrt {5 - \sqrt {21} } \cr & = \left( {\sqrt {14} + \sqrt 6 } \right).\sqrt {5 - \sqrt {21} } \cr & = \sqrt 2 \left( {\sqrt 7 + \sqrt 3 } \right).\sqrt {5 - \sqrt {21} } \cr & = \left( {\sqrt 7 + \sqrt 3 } \right).\sqrt {10 - 2\sqrt {21} } \cr & = \left( {\sqrt 7 + \sqrt 3 } \right).\sqrt {{{\left( {\sqrt 7 - \sqrt 3 } \right)}^2}} \cr & = \left( {\sqrt 7 + \sqrt 3 } \right).\left| {\sqrt 7 - \sqrt 3 } \right| \cr & = \left( {\sqrt 7 + \sqrt 3 } \right).\left( {\sqrt 7 - \sqrt 3 } \right)\,\,\left( {\text{ vì }\,\sqrt 7 > \sqrt 3 } \right) \cr & = {\left( {\sqrt 7 } \right)^2} - {\left( {\sqrt 3 } \right)^2} = 4. \cr}
Bài 2. Biến đổi vế trái ta có:
\displaystyle \eqalign{ & {4 \over {\sqrt x + 2}} + {2 \over {\sqrt x - 2}} - {{5\sqrt x - 6} \over {\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} \cr & = {{4\left( {\sqrt x - 2} \right) + 2\left( {\sqrt x + 2} \right) - \left( {5\sqrt x - 6} \right)} \over {\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} \cr & = {{4\sqrt x - 8 + 2\sqrt x + 4 - 5\sqrt x + 6} \over {\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} \cr & = {{\sqrt x + 2} \over {\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = {1 \over {\sqrt x - 2}} \cr}
Bài 3. a.
\displaystyle \eqalign{ & P = \left( {{1 \over {x - \sqrt x }} + {{\sqrt x } \over {x - 1}}} \right):{{x\sqrt x - 1} \over {x\sqrt x - \sqrt x }} \cr & = \left[ {{1 \over {\sqrt x \left( {\sqrt x - 1} \right)}} + {{\sqrt x } \over {\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right]:{{\sqrt {{x^3}} - 1} \over {\sqrt x \left( {x - 1} \right)}} \cr & = {{\sqrt x + 1 + x} \over {\sqrt x \left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}.{{\sqrt x \left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)} \over {\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} \cr&= {1 \over {\sqrt x - 1}} \cr}
(với \displaystyle x > 0 và \displaystyle x ≠ 1)
b. \displaystyle P = {1 \over 2} \Leftrightarrow {1 \over {\sqrt x - 1}} = {1 \over 2} \Rightarrow \sqrt x - 1 = 2
\displaystyle \Leftrightarrow \sqrt x = 3 \displaystyle ⇔ x = 9 (thỏa mãn điều kiện \displaystyle x > 0 và \displaystyle x ≠ 1)