Đề kiểm tra 15 phút - Đề số 7 - Bài 4 - Chương 3 - Hình học 9
Giải Đề kiểm tra 15 phút - Đề số 7 - Bài 4 - Chương 3 - Hình học 9
Đề bài
Từ một điểm P ở ngoài đường tròn (O), kẻ hai tiếp tuyến PA, PB đến đường tròn. Trên cung nhỏ AB lấy điểm C bất kì, kẻ các đường vuông góc CD, CE, CF lần lượt xuống các đường thẳng AB, BP, PA. Chứng minh rằng : ^DCF=^DCE và ^DFC=^CDE.
Phương pháp giải - Xem chi tiết
Sử dụng:
+Tứ giác nội tiếp
+G óc nội tiếp bằng góc giữa tiếp tuyến và dây cùng chắn 1 cung
Lời giải chi tiết
Ta có E và D nằm trên đường tròn đường kính BC, F và D nằm trên đường tròn đường kính AC.
Do đó ^DCF+^PAB=^DCE+^PBA=2v
Trong đó ^PAB=^PBA ( Góc nội tiếp bằng góc giữa tiếp tuyến và dây cùng chắn cung nhỏ AB).
Vậy ^DCF=^DCE.
Trong đường tròn (O), ta có : ^CBE=^CAB (góc giữa tiếp tuyến và một dây và góc nội tiếp cùng chắn cung CB).
Trong đường tròn đường kính BC, ta có : ^CBE=^CDE ( góc nội tiếp cùng chắn cung CE).
Trong đường tròn đường kính CA, ta có : ^CAB=^DFC ( góc nội tiếp cùng chắn cung CD).
Vậy ^DFC=^CDE.