Đề kiểm tra giữa học kì 1 Toán 6 Cánh diều- Đề số 4
Đề bài
Hãy chọn câu sai:
-
A.
Số chia hết cho 2 và 5 có tận cùng là số 0
-
B.
Một số chia hết cho 10 thì số đó chia hết cho 2
-
C.
Số chia hết cho 2 thì có tận cùng là số lẻ
-
D.
Số dư trong phép chia một số cho 2 bằng số dư trong phép chia chữ số tận cùng của nó cho 2
Tích \(10.10.10.100\) được viết dưới dạng lũy thừa gọn nhất là
-
A.
\({10^5}\)
-
B.
\({10^4}\)
-
C.
\({100^2}\)
-
D.
\({20^5}\)
Xác định số nhỏ nhất khác 0 trong các bội chung của 2 và 3.
-
A.
0
-
B.
6
-
C.
2
-
D.
3
Cho hình vuông \(MNPQ\), khẳng định nào sau đây đúng?
-
A.
\(MN\) và \(PQ\) song song
-
B.
\(MN\) và \(NP\) song song
-
C.
\(MQ\) và \(PQ\) song song
-
D.
\(MN\) và \(MQ\) song song
Cho \(a \vdots m\) và \(b \vdots m\) và \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý.
Khẳng định nào sau đây chưa đúng?
(Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)
-
A.
\(\left( {a + b} \right) \vdots m\)
-
B.
\(\left( {a - b} \right) \vdots m\)
-
C.
\(\left( {a + b + c} \right) \vdots m\)
-
D.
\(\left( {b + c} \right) \vdots m\)
Cho tam giác đều \(MNP\) có \(MN = 5\,cm\), khẳng định nào sau đây đúng?
-
A.
\(NP = 3\,cm\)
-
B.
\(MP = 4\,cm\)
-
C.
\(NP = 6\,cm\)
-
D.
\(MP = 5\,cm\)
Khẳng định nào sau đây là đúng:
-
A.
$A = {\rm{\{ 0; 1\} }}$ là tập hợp số nguyên tố
-
B.
$A = {\rm{\{ 3; 5\} }}$ là tập hợp số nguyên tố
-
C.
$A\, = {\rm{\{ 1; 3; 5\} }}$ là tập hợp các hợp số
-
D.
$A = {\rm{\{ 7;8\} }}$ là tập hợp số hợp số
Hình thang cân có:
-
A.
1 cạnh bên
-
B.
2 cạnh bên
-
C.
3 cạnh bên
-
D.
4 cạnh bên
Diện tích hình thang sau bằng:
-
A.
\(49\,cm\)
-
B.
\(49\,\,c{m^2}\)
-
C.
\(98\,\,c{m^2}\)
-
D.
\(98\,\,cm\)
Kết quả của phép tính \(547.63 + 547.37\) là
-
A.
\(54700\)
-
B.
\(5470\)
-
C.
\(45700\)
-
D.
\(54733\)
Khối lớp 6 của một trường có 255 học sinh đi dã ngoại. Cô phụ trách muốn chia đều các học sinh của khối 6 thành 9 nhóm. Hỏi cô chia như vậy đúng hay sai?
Đúng
Sai
Điền vào chỗ trống
Các số có chữ số tận cùng là … thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2.
-
A.
0, 1, 2, 3
-
B.
0, 2, 4, 6, 8
-
C.
0 hoặc 5
-
D.
1, 3, 5, 7, 9
Lũy thừa nào dưới đây biểu diễn thương \({17^8}:{17^3}\)?
-
A.
\({5^{17}}\)
-
B.
\({17^5}\)
-
C.
\({17^{11}}\)
-
D.
\({17^6}\)
Số phần tử của tập hợp các số tự nhiên chẵn lớn hơn 1010 nhưng không vượt quá 2012 là:
-
A.
\(500\)
-
B.
\(1000\)
-
C.
\(1001\)
-
D.
\(501\)
Chọn phát biểu sai ?
-
A.
Hình có bốn đỉnh là hình chữ nhật
-
B.
Hình chữ nhật có bốn đỉnh
-
C.
Hình chữ nhật có hai cặp cạnh đối song song.
-
D.
Hình chữ nhật có hai đường chéo bằng nhau
Nếu \(x \, \vdots \, 2\) và \(y \, \vdots \, 4\) thì tổng \(x + y\) chia hết cho
-
A.
$2$
-
B.
$4$
-
C.
$8$
-
D.
không xác định
-
A.
Hình a) và c) có trục đối xứng
-
B.
Hình c) có trục đối xứng
-
C.
Hình b) và c) có trục đối xứng
-
D.
Cả 3 hình có trục đối xứng
Chọn phát biểu sai ?
-
A.
Hình vuông có bốn cạnh bằng nhau
-
B.
Hình vuông có bốn cặp cạnh đối song song
-
C.
Hình vuông có hai đường chéo bằng nhau
-
D.
Hình vuông có bốn góc bằng nhau
Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng
-
A.
$140$
-
B.
$60$
-
C.
$80$
-
D.
$40$
Cho \(\overline {1a52} \) chia hết cho 9. Số thay thế cho \(a\) có thể là
-
A.
1
-
B.
2
-
C.
3
-
D.
5
8 là ước chung của
-
A.
12 và 32
-
B.
24 và 56
-
C.
14 và 48
-
D.
18 và 24
Hình chữ nhật có bao nhiêu trục đối xứng
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Phân tích số $18$ thành thừa số nguyên tố:
-
A.
$18 = 18.1$
-
B.
$18 = 10 + 8$
-
C.
$18 = {2.3^2}$
-
D.
$18 = 6 + 6 + 6$
-
A.
Hình a
-
B.
Hình b
-
C.
Hình c
-
D.
Hình a và Hình c
-
A.
Hình con sao biển có trục đối xứng
-
B.
Hình chiếc lá có trục đối xứng
-
C.
Hai hình đều có trục đối xứng.
-
D.
Không có hình nào có trục đối xứng
Chọn câu đúng.
-
A.
\(10000 = {10^3}\)
-
B.
\({1020^0} = 0\)
-
C.
\(x.{x^7} = {x^7}\)
-
D.
\({12^7}:{12^4} = {12^3}\)
Hãy chọn câu sai:
-
A.
Một số chia hết cho $9$ thì số đó chia hết cho $3$
-
B.
Một số chia hết cho $3$ thì số đó chia hết cho $9$
-
C.
Một số chia hết cho $10$ thì số đó chia hết cho $5$
-
D.
Một số chia hết cho $45$ thì số đó chia hết cho $9$
Có bao nhiêu số tự nhiên $x\; \in B\left( {8} \right)$ và $8 <x \le 88$
-
A.
$10$
-
B.
$9$
-
C.
$12$
-
D.
$11$
Trong những số sau, có bao nhiêu số chia hết cho 5?
10005459, 12345, 1254360, 1234544, 155498
-
A.
2
-
B.
3
-
C.
4
-
D.
5
Cho hình chữ nhật ABCD, \(AB = 5cm\), chọn khẳng định đúng:
-
A.
\(BC\, = 5\,cm\)
-
B.
\(AC = 5\,cm\)
-
C.
\(AD = \,5\,cm\)
-
D.
\(DC = 5\,cm\)
Cho hình vẽ sau:
Viết tập hợp C và D.
-
A.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {20;101;102;106} \right\}\)
-
B.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {3;20;102;106} \right\}\)
-
C.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {3;20;101} \right\}\)
-
D.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {3;20;101;102;106} \right\}\)
Số tự nhiên nào dưới đây thỏa mãn \(2018\left( {x - 2018} \right) = 2018\)
-
A.
\(x = 2017\)
-
B.
\(x = 2018\)
-
C.
\(x = 2019\)
-
D.
\(x = 2020\)
Tính nhanh: \(\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\) ta được kết quả là
-
A.
$0$
-
B.
$1002$
-
C.
$20$
-
D.
$2$
Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
-
A.
\(1454\)
-
B.
\(1450\)
-
C.
\(1455\)
-
D.
\(1452\)
Nếu cho 7 hình vuông đơn vị ghép thành hình chữ nhật thì có mấy cách xếp (Không kể việc xoay chiều dài và chiều rộng)?
-
A.
1
-
B.
2
-
C.
3
-
D.
4
-
A.
Tam giác đều
-
B.
Cánh quạt
-
C.
Trái tim
-
D.
Cánh diều
Cho \(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\) . Khi đó \(C\) chia hết cho số nào dưới đây?
-
A.
\(9\)
-
B.
\(11\)
-
C.
\(13\)
-
D.
\(12\)
Điền số thích hợp vào ô trống:
\(161291 + \)
\(= (6000 + 725) + 161291\)
Cho hình bình hành có chu vi là 480cm, có độ dài cạnh đáy gấp 5 lần cạnh kia và gấp 8 lần chiều cao. Tính diện tích hình bình hành
-
A.
5000 cm
-
B.
10000 cm
-
C.
2500 cm 2
-
D.
5000 cm 2
Số \(A = \overline {abcd} - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?
-
A.
\(2\)
-
B.
\(5\)
-
C.
\(9\)
-
D.
\(6\)
Lời giải và đáp án
Hãy chọn câu sai:
-
A.
Số chia hết cho 2 và 5 có tận cùng là số 0
-
B.
Một số chia hết cho 10 thì số đó chia hết cho 2
-
C.
Số chia hết cho 2 thì có tận cùng là số lẻ
-
D.
Số dư trong phép chia một số cho 2 bằng số dư trong phép chia chữ số tận cùng của nó cho 2
Đáp án : C
Số chia hết cho $2$ có tận cùng là số chẵn nên câu sai là: Số chia hết cho 2 có tận cùng là số lẻ.
Tích \(10.10.10.100\) được viết dưới dạng lũy thừa gọn nhất là
-
A.
\({10^5}\)
-
B.
\({10^4}\)
-
C.
\({100^2}\)
-
D.
\({20^5}\)
Đáp án : A
+ Tách \(100 = 10.10\)
+ Viết dưới dạng lũy thừa với cơ số $10.$
Ta có \(10.10.10.100\)\( = 10.10.10.10.10 = {10^5}\)
Xác định số nhỏ nhất khác 0 trong các bội chung của 2 và 3.
-
A.
0
-
B.
6
-
C.
2
-
D.
3
Đáp án : B
Tìm B(2), B(3): Muốn tìm bội của một số tự nhiên ta lấy số đó nhân lần lượt với các số 0; 1; 2; 3…
Tìm BC(2,3)
Tìm số nhỏ nhất khác 0 trong các bội chung vừa tìm được.
B(2)={0;2;4;6;8;...}
B(3)={0;3;6;9;...}
Số nhỏ nhất khác 0 trong bội chung của 2 và 3 là: 6.
Cho hình vuông \(MNPQ\), khẳng định nào sau đây đúng?
-
A.
\(MN\) và \(PQ\) song song
-
B.
\(MN\) và \(NP\) song song
-
C.
\(MQ\) và \(PQ\) song song
-
D.
\(MN\) và \(MQ\) song song
Đáp án : A
Trong hình vuông, hai cặp cạnh đối song song với nhau.
Trong hình vuông \(MNPQ\) có hai cặp cạnh đối song song với nhau là:
+ \(MN\) và \(PQ\).
+ \(MQ\) và \(NP\)
=> Đáp án A đúng .
Cho \(a \vdots m\) và \(b \vdots m\) và \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý.
Khẳng định nào sau đây chưa đúng?
(Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)
-
A.
\(\left( {a + b} \right) \vdots m\)
-
B.
\(\left( {a - b} \right) \vdots m\)
-
C.
\(\left( {a + b + c} \right) \vdots m\)
-
D.
\(\left( {b + c} \right) \vdots m\)
Đáp án : B
Tính chất 1 : Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.
\(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a + b} \right) \vdots m\)
\(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a - b} \right) \vdots m\) với \(\left( {a \ge b} \right)\)
\(a \vdots m;b \vdots m;c \vdots m \Rightarrow \left( {a + b + c} \right) \vdots m\)
\(\left( {a - b} \right) \vdots m\) sai vì thiếu điều kiện \(a \ge b\)
Cho tam giác đều \(MNP\) có \(MN = 5\,cm\), khẳng định nào sau đây đúng?
-
A.
\(NP = 3\,cm\)
-
B.
\(MP = 4\,cm\)
-
C.
\(NP = 6\,cm\)
-
D.
\(MP = 5\,cm\)
Đáp án : D
Trong tam giác đều ba cạnh bằng nhau mà \(MN = 5\,cm\) nên ta có: \(MN = NP = MP = 5\,cm\)
=> Chọn D
Khẳng định nào sau đây là đúng:
-
A.
$A = {\rm{\{ 0; 1\} }}$ là tập hợp số nguyên tố
-
B.
$A = {\rm{\{ 3; 5\} }}$ là tập hợp số nguyên tố
-
C.
$A\, = {\rm{\{ 1; 3; 5\} }}$ là tập hợp các hợp số
-
D.
$A = {\rm{\{ 7;8\} }}$ là tập hợp số hợp số
Đáp án : B
- Áp dụng định nghĩa số nguyên tố và hợp số.
- Số $0;1$ không phải là số nguyên tố cũng không phải là hợp số.
Đáp án A: Sai vì $0$ và $1$ không phải là số nguyên tố.
Đáp án C: Sai vì $1$ không phải là hợp số, $3,5$ là các số nguyên tố.
Đáp án D: Sai vì $7$ không phải là hợp số.
Đáp án B: Đúng vì $3;5$ đều là số nguyên tố
Hình thang cân có:
-
A.
1 cạnh bên
-
B.
2 cạnh bên
-
C.
3 cạnh bên
-
D.
4 cạnh bên
Đáp án : B
Sử dụng dấu hiệu nhận biết hình thang cân.
Hình thang cân có 2 cạnh bên.
Diện tích hình thang sau bằng:
-
A.
\(49\,cm\)
-
B.
\(49\,\,c{m^2}\)
-
C.
\(98\,\,c{m^2}\)
-
D.
\(98\,\,cm\)
Đáp án : B
- Diện tích của hình thang bằng tổng độ dài hai đáy nhân với chiều cao rồi chia đôi.
\(S = \dfrac{{(a + b).h}}{2}\)
Diện tích hình thang đã cho là: \(\frac{{\left( {5 + 9} \right).7}}{2} = 49\,\,\left( {c{m^2}} \right)\)
Kết quả của phép tính \(547.63 + 547.37\) là
-
A.
\(54700\)
-
B.
\(5470\)
-
C.
\(45700\)
-
D.
\(54733\)
Đáp án : A
Sử dụng tính chất phân phối của phép nhân đối với phép cộng để thực hiện phép tính.
$ab+ac=a(b+c)$
Ta có \(547.63 + 547.37\)\( = 547.\left( {63 + 37} \right) = 547.100 = 54700.\)
Khối lớp 6 của một trường có 255 học sinh đi dã ngoại. Cô phụ trách muốn chia đều các học sinh của khối 6 thành 9 nhóm. Hỏi cô chia như vậy đúng hay sai?
Đúng
Sai
Đúng
Sai
Số học sinh chia đều được 9 nhóm nếu số học sinh chia hết cho 9.
Ta có 255 có tổng các chữ số bằng 2+5+5=12 không chia hết cho 9 nên cô phụ trách không thể chia đều số học sinh thành 9 nhóm được.
Điền vào chỗ trống
Các số có chữ số tận cùng là … thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2.
-
A.
0, 1, 2, 3
-
B.
0, 2, 4, 6, 8
-
C.
0 hoặc 5
-
D.
1, 3, 5, 7, 9
Đáp án : B
Các số có chữ số tận cùng là 0, 2, 4, 6, 8 thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2.
Lũy thừa nào dưới đây biểu diễn thương \({17^8}:{17^3}\)?
-
A.
\({5^{17}}\)
-
B.
\({17^5}\)
-
C.
\({17^{11}}\)
-
D.
\({17^6}\)
Đáp án : B
Sử dụng công thức chia hai lũy thừa cùng cơ số ${a^m}:{a^n} = {a^{m - n}}$ \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)
Ta có \({17^8}:{17^3}\)\( = {17^{8 - 3}} = {17^5}\)
Số phần tử của tập hợp các số tự nhiên chẵn lớn hơn 1010 nhưng không vượt quá 2012 là:
-
A.
\(500\)
-
B.
\(1000\)
-
C.
\(1001\)
-
D.
\(501\)
Đáp án : D
Gọi B là tập hợp các số tự nhiên chẵn lớn hơn $1010$ nhưng không vượt quá $2012$. Ta viết B dưới dạng liệt kê phần tử. Nhận xét rằng dãy các phần tử của B là dãy cách đều 2 đơn vị Nên số phần tử của tập hợp cũng chính là số số hạng của dãy cách đều 2 đơn vị Số số hạng = (số hạng cuối - số hạng đầu) : khoảng cách + 1
Gọi B là tập hợp các số tự nhiên chẵn lớn hơn 1010 nhưng không vượt quá 2012. $B = \left\{ {1012;1014;1016;...;2008;2012} \right\}\;$ Xét dãy số $1012;{\rm{ }}1014;{\rm{ }}1016;{\rm{ }}...;{\rm{ }}2008;{\rm{ }}2012$ Ta thấy dãy trên là dãy số cách đều 2 đơn vị Số số hạng của dãy số trên là: $\left( {2012 - 1012} \right):2 + 1 = 501$ số hạng Số phần tử của tập hợp B cũng chính là số số hạng của dãy số trên Nên tập hợp các số tự nhiên chẵn lớn hơn $1010$ nhưng không vượt quá $2012$ có $501$ phần tử.
Chọn phát biểu sai ?
-
A.
Hình có bốn đỉnh là hình chữ nhật
-
B.
Hình chữ nhật có bốn đỉnh
-
C.
Hình chữ nhật có hai cặp cạnh đối song song.
-
D.
Hình chữ nhật có hai đường chéo bằng nhau
Đáp án : A
Sử dụng dấu hiệu nhận biết hình chữ nhật
Hình chữ nhật có bốn đỉnh, hai cặp cạnh đối song song, hai đường chéo bằng nhau.
=> Đáp án B, C, D đúng.
Hình có 4 đỉnh chưa chắc là hình chữ nhật ví dụ:
Nếu \(x \, \vdots \, 2\) và \(y \, \vdots \, 4\) thì tổng \(x + y\) chia hết cho
-
A.
$2$
-
B.
$4$
-
C.
$8$
-
D.
không xác định
Đáp án : A
Tính chất 1: Nếu số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.
Ta có: \(x\,\, \vdots \,\,2;\,\,y\,\, \vdots \,\,4 \Rightarrow y\,\, \vdots \,\,2 \Rightarrow \left( {x + y} \right)\,\, \vdots \,\,2\)
-
A.
Hình a) và c) có trục đối xứng
-
B.
Hình c) có trục đối xứng
-
C.
Hình b) và c) có trục đối xứng
-
D.
Cả 3 hình có trục đối xứng
Đáp án : B
Ta có chữ N và Z không có trục đối xứng, chữ O có trục đối xứng.
Vậy hình c) có trục đối xứng.
Chọn phát biểu sai ?
-
A.
Hình vuông có bốn cạnh bằng nhau
-
B.
Hình vuông có bốn cặp cạnh đối song song
-
C.
Hình vuông có hai đường chéo bằng nhau
-
D.
Hình vuông có bốn góc bằng nhau
Đáp án : B
Sử dụng dấu hiệu nhận biết của hình vuông.
Hình vuông có hai cặp cạnh đối song song => Đáp án B sai.
Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng
-
A.
$140$
-
B.
$60$
-
C.
$80$
-
D.
$40$
Đáp án : D
Thực hiện phép tính trong ngoặc tròn rồi đến ngoặc vuông. Sau đó là phép nhân và phép trừ.
Ta có \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\)
\( = 2\left[ {\left( {195 + 5} \right):8 + 195} \right] - 400\)
\( = 2\left[ {200:8 + 195} \right] - 400\)
\( = 2\left( {25 + 195} \right) - 400\)
\( = 2.220 - 400\)
\( = 440 - 400\)
\( = 40\)
Cho \(\overline {1a52} \) chia hết cho 9. Số thay thế cho \(a\) có thể là
-
A.
1
-
B.
2
-
C.
3
-
D.
5
Đáp án : A
Tìm điều kiện của \(a\).
Tính tổng các chữ số trong \(\overline {1a52} \)
Tìm \(a\) để tổng đó chia hết cho 9.
Tổng các chữ số của \(\overline {1a52} \) là \(1 + a + 5 + 2 = a + 8\) để số \(\overline {1a52} \) chia hết cho 9 thì \(a + 8\) phải chia hết cho 9.
Do a là các số tự nhiên từ 0 đến 9 nên
\(\begin{array}{l}0 + 8 \le a + 8 \le 9 + 8\\ \Rightarrow 8 \le a + 8 \le 17\end{array}\)
Số chia hết cho 9 từ 8 đến 17 chỉ có đúng một số 9, do đó \(a + 8 = 9 \Rightarrow a = 1\)
Vậy số thay thế cho a chỉ có thể là 1
8 là ước chung của
-
A.
12 và 32
-
B.
24 và 56
-
C.
14 và 48
-
D.
18 và 24
Đáp án : B
- Chia các số cho 8
- Nếu cả 2 số cần xét chia hết cho 8 thì 8 là ước chung của 2 số đó.
24:8=3;
56:8=7
=> 8 là ước chung của 24 và 56.
Hình chữ nhật có bao nhiêu trục đối xứng
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Đáp án : B
Trục đối xứng của hình chữ nhật là đường thẳng đi qua trung điểm hai đáy.
Vậy hình chữ nhật có 2 trục đối xứng.
Phân tích số $18$ thành thừa số nguyên tố:
-
A.
$18 = 18.1$
-
B.
$18 = 10 + 8$
-
C.
$18 = {2.3^2}$
-
D.
$18 = 6 + 6 + 6$
Đáp án : C
- Phân tích số ra thành số nguyên tố.
- Đáp án A sai vì 1 không phải là số nguyên tố
- Đáp án B sai vì đây là phép cộng.
- Đáp án C đúng vì $2$ và $3$ là $2$ số nguyên tố và ${2.3^2} = 2.9 = 18$
- Đáp án D sai vì đây là phép cộng.
-
A.
Hình a
-
B.
Hình b
-
C.
Hình c
-
D.
Hình a và Hình c
Đáp án : A
Hình a có tâm đối xứng:
-
A.
Hình con sao biển có trục đối xứng
-
B.
Hình chiếc lá có trục đối xứng
-
C.
Hai hình đều có trục đối xứng.
-
D.
Không có hình nào có trục đối xứng
Đáp án : A
Vậy hình con sao biển có trục đối xứng.
Chọn câu đúng.
-
A.
\(10000 = {10^3}\)
-
B.
\({1020^0} = 0\)
-
C.
\(x.{x^7} = {x^7}\)
-
D.
\({12^7}:{12^4} = {12^3}\)
Đáp án : D
Dựa vào quy tắc nhân, chia hai lũy thừa cùng cơ số: \({a^m}.{a^n} = {a^{m + n}}\,\,\,\left( {m;n \in N} \right);\)\(\,\,{a^m}:{a^n} = {a^{m - n}}\,\,\,\left( {a \ne 0;m \ge n} \right)\)
Ta có:
\(\begin{array}{l}10000 = {10^4}\\{1020^0} = 1\\x.{x^7} = {x^{1 + 7}} = {x^8}\\{12^7}:{12^4} = {12^{7 - 4}} = {12^3}\end{array}\)
Do đó chỉ có đáp án D đúng.
Hãy chọn câu sai:
-
A.
Một số chia hết cho $9$ thì số đó chia hết cho $3$
-
B.
Một số chia hết cho $3$ thì số đó chia hết cho $9$
-
C.
Một số chia hết cho $10$ thì số đó chia hết cho $5$
-
D.
Một số chia hết cho $45$ thì số đó chia hết cho $9$
Đáp án : B
Câu sai là B: Số chia hết cho $3$ thì chia hết cho $9.$ Chẳng hạn số $3$ chia hết cho $3$ nhưng số $3$ không chia hết cho $9.$
+ Mọi số chia hết cho $9$ đều hia hết cho $3$ nên A đúng.
+ Một số chia hết cho $10$ thì số đó chia hết cho $5$ vì các số chia hết cho $10$ luôn có chữ số tận cùng là chữ số $0.$ Nên C đúng.
+ Một số chia hết cho $45$ thì số đó chia hết cho $9$ và chia hết cho $5$ nên D đúng.
Có bao nhiêu số tự nhiên $x\; \in B\left( {8} \right)$ và $8 <x \le 88$
-
A.
$10$
-
B.
$9$
-
C.
$12$
-
D.
$11$
Đáp án : A
+) \(B\left( a \right) = \left\{ {m.a|m \in N} \right\} = \left\{ {0;a;2a;...} \right\}\)
+) Kết hợp các điều kiện của đề bài để tìm số thích hợp
$\,\,\left\{ \begin{array}{l}x \in B\left( 8 \right)\\8 < x \le 88\end{array} \right. $ suy ra $ \left\{ \begin{array}{l}x \in {\rm{\{ 0;8;16;24; 32;}}...{\rm{\} }}\\8 < x \le 88\end{array} \right.$
Do đó $x \in \left\{ {16;24;32;40;48;56;64;72;80;88} \right\}$
Vậy có \(10\) số thỏa mãn yêu cầu bài toán.
Trong những số sau, có bao nhiêu số chia hết cho 5?
10005459, 12345, 1254360, 1234544, 155498
-
A.
2
-
B.
3
-
C.
4
-
D.
5
Đáp án : A
Các số có chữ số tận cùng là \(0\) hoặc \(5\) thì chia hết cho \(5\) và chỉ những số đó mới chia hết cho \(5\) .
Số 12345 có chữ số tận cùng là 5 nên chia hết cho 5
Số 1254360 có chữ số tận cùng là 0 nên chia hết cho 5
Các số còn lại không có chữ số tận cùng là 0 cùng không có chữ số tận cùng là 5 nên không chia hết cho 5.
Vậy có 2 số chia hết cho 5.
Cho hình chữ nhật ABCD, \(AB = 5cm\), chọn khẳng định đúng:
-
A.
\(BC\, = 5\,cm\)
-
B.
\(AC = 5\,cm\)
-
C.
\(AD = \,5\,cm\)
-
D.
\(DC = 5\,cm\)
Đáp án : D
Trong hình chữ nhật hai cạnh đối bằng nhau.
Trong hình chữ nhật ABCD, cạnh đối của cạnh AB là DC nên \(AB = DC = 5\,cm\)
Cho hình vẽ sau:
Viết tập hợp C và D.
-
A.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {20;101;102;106} \right\}\)
-
B.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {3;20;102;106} \right\}\)
-
C.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {3;20;101} \right\}\)
-
D.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {3;20;101;102;106} \right\}\)
Đáp án : D
Các phần tử trong vòng tròn là các phần tử thuộc tập hợp.
Từ hình vẽ ta viết các tập hợp dưới dạng liệt kê.
\(C = \left\{ {102;106} \right\}\) và \(D = \left\{ {3;20;101;102;106} \right\}\)
Số tự nhiên nào dưới đây thỏa mãn \(2018\left( {x - 2018} \right) = 2018\)
-
A.
\(x = 2017\)
-
B.
\(x = 2018\)
-
C.
\(x = 2019\)
-
D.
\(x = 2020\)
Đáp án : C
Áp dụng mối quan hệ giữa các số: để tìm thừa số chưa biết ta lấy tích chia cho thừa số đã biết.
Ta có \(2018\left( {x - 2018} \right) = 2018\)
\(x - 2018 = 2018:2018\)
\(x - 2018 = 1\)
\(x = 2018 + 1\)
\(x = 2019\)
Vậy \(x = 2019.\)
Tính nhanh: \(\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\) ta được kết quả là
-
A.
$0$
-
B.
$1002$
-
C.
$20$
-
D.
$2$
Đáp án : A
Thực hiện tính trong ngoặc trước sau đó đến nhân chia, cộng trừ.
\(\begin{array}{l}\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\\ = \left( {2 + 4 + 6 + ... + 100} \right)\left( {36.3.111 - 36.3.111} \right)\\ = \left( {2 + 4 + 6 + ... + 100} \right).0\\ = 0\end{array}\)
Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
-
A.
\(1454\)
-
B.
\(1450\)
-
C.
\(1455\)
-
D.
\(1452\)
Đáp án : C
+ Các số chia hết cho \(5\) có chữ số tận cùng là \(0\) hoặc \(5.\)
+ Các số chia hết cho \(3\) có tổng các chữ số chia hết cho \(3.\)
Từ đó lập luận để tìm các số thỏa mãn.
Vì \(\overline {145*} \) chia hết cho \(5\) nên \(*\) có thể bằng \(0\) hoặc \(5.\)
+ Nếu \(*\) bằng \(0\) thì ta được số \(1450\) có \(1 + 4 + 5 + 0 = 10\not \vdots 3\) nên loại
+ Nếu \(*\) bằng \(5\) thì ta được số \(1455\) có \(1 + 4 + 5 + 5 = 15 \vdots 3\) nên thỏa mãn.
Vậy số cần tìm là \(1455.\)
Nếu cho 7 hình vuông đơn vị ghép thành hình chữ nhật thì có mấy cách xếp (Không kể việc xoay chiều dài và chiều rộng)?
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Đáp án : A
Hình vuông đơn vị là hình vuông có cạnh bằng 1.
Để xếp các hình vuông đơn vị thành hình chữ nhật thì số lượng hình vuông phải chia hết cho độ dài các cạnh của hình chữ nhật.
Nếu xếp 7 hình vuông đơn vị thành hình chữ nhật thì chiều rộng của hình chữ nhật chỉ có thể xếp:
-
A.
Tam giác đều
-
B.
Cánh quạt
-
C.
Trái tim
-
D.
Cánh diều
Đáp án : B
Hình có tâm đối xứng là hình cánh quạt (Tâm đối xứng là tâm của đường tròn nhỏ phía trong)
Cho \(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\) . Khi đó \(C\) chia hết cho số nào dưới đây?
-
A.
\(9\)
-
B.
\(11\)
-
C.
\(13\)
-
D.
\(12\)
Đáp án : C
Tổng C có 12 số hạng nên nhóm ba số hạng liền nhau , biến đổi để chứng minh dựa vào tính chất : \(a \, \vdots \, m \Rightarrow a.k \, \vdots \, m \, (k \in \mathbb{N})\)
Ghép ba số hạng liên tiếp thành một nhóm , ta được
\(C = 1 + 3 + {3^2} + {3^3} + ... + {3^{11}}\)\( = \left( {1 + 3 + {3^2}} \right) + \left( {{3^3} + {3^4} + {3^5}} \right)... + \left( {{3^9} + {3^{10}} + {3^{11}}} \right)\)
\( = \left( {1 + 3 + {3^2}} \right) + {3^3}\left( {1 + 3 + {3^2}} \right) + ... + {3^9}\left( {1 + 3 + {3^2}} \right)\)\( = \left( {1 + 3 + {3^2}} \right)\left( {1 + {3^3} + {3^6} + {3^9}} \right)\)
\( = 13.\left( {1 + {3^3} + {3^6} + {3^9}} \right) \, \vdots \, 13\) (do \(13 \, \vdots \, 13\))
Vậy \(C \, \vdots \, 13.\)
Điền số thích hợp vào ô trống:
\(161291 + \)
\(= (6000 + 725) + 161291\)
\(161291 + \)
\(= (6000 + 725) + 161291\)
Áp dụng tính chất giao hoán của phép cộng: Khi đổi chỗ các số hạng trong một tổng thì tổng đó không thay đổi.
Ta có: \((6000 + 725) + 161291 = 6725 + 161291\)
Hay \(161291 + 6725 = (6000 + 725) + 161291\)
Vậy đáp án đúng điền vào ô trống là \(6725\).
Cho hình bình hành có chu vi là 480cm, có độ dài cạnh đáy gấp 5 lần cạnh kia và gấp 8 lần chiều cao. Tính diện tích hình bình hành
-
A.
5000 cm
-
B.
10000 cm
-
C.
2500 cm 2
-
D.
5000 cm 2
Đáp án : D
- Tính nửa chu vi hình bình hành
- Tính cạnh đáy của hình bình hành
- Tính chiều cao của hình bình hành
=> Diện tích hình bình hành
Diện tích hình bình hành là: \(S = b.h\)
Trong đó \(b\) là cạnh, \(h\) là chiều cao tương ứng.
- Ta có nửa chu vi hình bình hành là: 480 : 2 = 240 (cm)
Cạnh đáy gấp 5 lần cạnh kia nên nửa chu vi sẽ gấp 6 lần cạnh kia.
- Ta có cạnh đáy hình bình hành là: 240 : 6 . 5 = 200 (cm)
- Chiều cao của hình bình hành là: 200 : 8 = 25 (cm)
- Diện tích của hình bình hành là: 200 . 25 = 5000 (cm 2 )
Số \(A = \overline {abcd} - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?
-
A.
\(2\)
-
B.
\(5\)
-
C.
\(9\)
-
D.
\(6\)
Đáp án : C
+ Phân tích \(\overline {abcd} = 1000a + 100b + 10c + d\) từ đó tính được \(A.\)
+ Dựa vào tính chất chia hết của một tổng và dấu hiệu chia hết cho \(9\) để giải bài toán.
Ta có \(A = \overline {abcd} - \left( {a + b + c + d} \right)\)\( = 1000a + 100b + 10c + d - \left( {a + b + c + d} \right)\)
\( = 999a + 99b + 9c + \left( {a + b + c + d} \right) - \left( {a + b + c + d} \right)\)
\( = 999a + 99b + 9c\)
Mà \(999 \, \vdots \, 9;\,99 \, \vdots \, 9;\,9 \, \vdots \, 9\) nên \(A \, \vdots \, 9.\)