Giải sbt Toán 11 Chương 8. Quan hệ vuông góc trong không gian - Chân trời sáng tạo — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo


Câu hỏi trắc nghiệm trang 74, 75 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Trong không gian, khẳng định nào sau đây đúng? A. Cho hai đường thẳng song song, B. Trong không gian, C. Hai đường thẳng phân biệt vuông góc với nhau thì chúng cắt nhau. D. Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba

Bài 1 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh a, \(SA \) \( = a\sqrt 3 \) và vuông góc với đáy. Xác định và tính góc giữa:

Bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết \(SA = \frac{{a\sqrt 6 }}{2}\).

Bài 1 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho tứ diện ABCD có tam giác BCD vuông cân tại B và \(AB \bot \left( {BCD} \right)\). Cho biết \(BC = a\sqrt 2 ,AB = \frac{a}{{\sqrt 3 }}\).

Bài 1 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh \(a\sqrt 2 \). Biết rằng \(SA = SB = SC = SD,SO = 2a\sqrt 2 \).

Bài 1 trang 50 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Tính góc giữa AB và DM.

Bài 1 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. a) \(BC \bot \left( {OAH} \right)\). b) H là trực tâm của \(\Delta ABC\). c) \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\).

Bài 2 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 3. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm I của cạnh AB.

Bài 2 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của SC.

Bài 2 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Cho biết \(SA = a\) và \(SA \bot \left( {ABCD} \right)\).

Bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho tứ diện ABCD có \(AB \bot CD\) và \(AC \bot BD\). Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD).

Bài 2 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \(SA = a\sqrt 3 ,SA \bot AC,\) \(SA \bot BC,\) \(\widehat {BAD} = {120^0}\).

Bài 2 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC). b) Gọi O và H là trực tâm \(\Delta BCD\) và \(\Delta ACD\).

Bài 3 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng \(\frac{{a\sqrt {15} }}{6}\). Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).

Bài 3 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’. Tính khoảng cách giữa hai đường thẳng MN và B’D’.

Bài 3 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và \(SA \bot \left( {ABC} \right)\).

Bài 3 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho tứ diện ABCD có \(DA \bot \left( {ABC} \right)\), ABC là tam giác cân tại A. Gọi M là trung điểm của BC. Vẽ \(AH \bot MD\) tại H.

Bài 3 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho tứ diện ABCD có \(AB = CD,AC = BD,AD = BC\). a) Chứng minh đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc hai cạnh đó.

Bài 3 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S. ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho \(HA = 2HB\).

Bài 4 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\). Tam giác ABC vuông tại A, \(\widehat {ABC} \) \( = {30^0}\), \(AC \) \( = a,SA \) \( = \frac{{a\sqrt 3 }}{2}\).

Xem thêm

Cùng chủ đề:

Giải sbt Toán 11 Chương 3. Giới hạn. Hàm số liên tục - Chân trời sáng tạo
Giải sbt Toán 11 Chương 4. Đường thẳng và mặt phẳng. Quan hệ song song trong không gian - Chân trời sáng tạo
Giải sbt Toán 11 Chương 5. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm - Chân trời sáng tạo
Giải sbt Toán 11 Chương 6. Hàm số mũ và hàm số lôgarit - Chân trời sáng tạo
Giải sbt Toán 11 Chương 7. Đạo hàm - Chân trời sáng tạo
Giải sbt Toán 11 Chương 8. Quan hệ vuông góc trong không gian - Chân trời sáng tạo
Giải sbt Toán 11 Chương 9. Xác suất - Chân trời sáng tạo
Giải sbt Toán lớp 11 tập 1 - Chân trời sáng tạo
Giải sbt Toán lớp 11 tập 2 - Chân trời sáng tạo
SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo