Giải toán 12 bài 1 trang 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Cùng khám phá — Không quảng cáo

Toán 12 Cùng khám phá


Câu hỏi mục 1 trang 2, 3, 4

Một hòn đá được thả rơi tự do từ miệng của một giếng cạn. Biết rằng vận tốc của hòn đá tại thời điểm t giây tính từ lúc bắt đầu thả được tính bởi v(t)=10t (m/s). a) Tìm hàm số s(t) mô tả quãng đường chuyển động (tính theo mét) của hòn đá sau t giây kể từ khi được thả. b) Tính độ sâu của giếng, biết thời gian rơi tự do của hòn đá là 2,2 giây.

Câu hỏi mục 2 trang 4, 5, 6, 7

Tìm a) \(\int {{x^{\frac{2}{3}}}dx;} \) b) \(\int {\frac{1}{{\sqrt {{x^3}} }}} dx\).

Câu hỏi mục 3 trang 8, 9

Tìm một nguyên hàm \(F(x)\) của hàm số \(f(x) = x\). Chứng minh \(2F(x)\) là một nguyên hàm của hàm số \(2f(x)\).

Bài 4.1 trang 10

Trong các cặp hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại? a) (x{e^x}) và ((x - 1){e^x}); b) (frac{1}{2}{ln ^2}x) và (frac{{ln x}}{x}).

Bài 4.2 trang 10

Tìm họ nguyên hàm của các hàm số sau: a) (f(x) = 4{x^5} + frac{x}{2}) b) (f(x) = 6{x^4} - frac{{{e^x}}}{2} + sin x) c) (f(x) = {5^x} - frac{4}{{xsqrt x }} + 3)

Bài 4.3 trang 10

Tìm hàm số (f(x)), biết một nguyên hàm của (f(x)) là: a) (F(x) = xsin x + sqrt 2 ) b) (F(x) = {e^x} - sqrt x )

Bài 4.4 trang 10

Tìm một nguyên hàm \(F(x)\) của hàm số \(f(x) = 2x - {e^x}\), biết \(F(0) = - 2\).

Bài 4.5 trang 10

Biết \(F(x) = {e^x} + {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và hàm số \(f'(x)\) liên tục trên \(\mathbb{R}\). Tìm \(\int {f'} (x){\mkern 1mu} dx\).

Bài 4.6 trang 10

Tìm họ nguyên hàm của các hàm số sau: a) \(f(x) = 3x(1 - x)\) b) \(f(x) = {3^{2x}}\) c) \(f(x) = \frac{{{x^2} - x + 2}}{{{x^2}}}\) d) \(f(x) = {(2x - 1)^2}\)

Bài 4.7 trang 10

Tìm: a) \(\int {{4^{\frac{x}{2}}}} {\mkern 1mu} dx\) b) \(\int {\frac{1}{{{{\sin }^2}x{{\cos }^2}x}}} {\mkern 1mu} dx\) c) \(\int {{e^x}} \left( {2 + \frac{{{e^{ - x}}}}{{3{{\cos }^2}x}}} \right)dx\)

Bài 4.8 trang 10

Cường độ dòng điện (đơn vị: A) trong một dây dẫn tại thời điểm t giây là: \(I(t) = Q'(t) = 3{t^2} - 6t + 5\), Với \(Q(t)\) là điện lượng (đơn vị: C) truyền trong dây dẫn tại thời điểm t. Biết khi \(t = 1\) giây, điện lượng truyền trong dây dẫn là \(Q(1) = 4\). Tính điện lượng truyền trong dây dẫn khi \(t = 3\).

Bài 4.9 trang 10

Một chiếc cốc chứa nước ở 95°C được đặt trong phòng có nhiệt độ 20°C. Theo định luật làm mát của Newton, nhiệt độ của nước trong cốc sau t phút (xem \(t = 0\) là thời điểm nước ở 95°C) là một hàm số \(T(t)\). Tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm t phút được xác định bởi \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\)(°C/phút). Tính nhiệt độ của nước tại thời điểm \(t = 30\) phút.


Cùng chủ đề:

Giải toán 12 Bài tập cuối chương 2 trang 82, 83, 84, 85, 86 Cùng khám phá
Giải toán 12 Bài tập cuối chương 3 trang 36, 37, 38, 39 Cùng khám phá
Giải toán 12 Bài tập cuối chương 3 trang 104, 105, 106, 107, 108, 109 Cùng khám phá
Giải toán 12 Hoạt động thực hành và trải nghiệm trang 44 Cùng khám phá
Giải toán 12 bài 1 trang 2,3,4 Cùng khám phá
Giải toán 12 bài 1 trang 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Cùng khám phá
Giải toán 12 bài 1 trang 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 Cùng khám phá
Giải toán 12 bài 1 trang 51, 52, 53, 54, 55 Cùng khám phá
Giải toán 12 bài 1 trang 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 Cùng khám phá
Giải toán 12 bài 2 trang 10,11,12 Cùng khám phá
Giải toán 12 bài 2 trang 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 Cùng khám phá