Phương trình nào sau đây không là phương trình đường tròn?
Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x + 8)2 + (y – 10)2 = 36. Toạ
Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x − 1)2 + (y + 2)2 = 4. Bán kính của (C) bằng
Trong mặt phẳng toạ độ Oxy, đường tròn tâm I(− 4 ; 2) bán kính R = 9 có phương trình là:
Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x − 3)2 + (y − 4)2 = 25. Tiếp tuyến tại điểm M(0; 8) thuộc đường tròn có một vectơ pháp tuyến là:
Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x – 6)2 + (y – 7)2 = 16. Hai điểm M, N chuyển động trên đường tròn (C). Khoảng cách lớn nhất giữa hai điểm M và N bằng:
Tìm k sao cho phương trình: x2 + y2 – 6x + 2ky + 2k + 12 = 0 là phương trình đường tròn.
Viết phương trình đường tròn (C) trong mỗi trường hợp sau:
Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C): (x + 2)2 + (y − 3)2 = 4 trong mỗi trường hợp sau:
Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x + 2)2 + (y − 4)2 = 25 và điểm A(-1; 3).
Trong mặt phẳng toạ độ Oxy, cho các đường thẳng:
Trong mặt phẳng toạ độ Oxy, cho điểm M(1 ; 1) và đường thẳng ∆: 3x + 4y + 3 = 0. Viết phương trình đường tròn (C), biết (C) có tâm M và đường thẳng ∆ cắt (C) tại hai điểm N, P thoả mãn tam giác MNP đều.