Giải SBT Toán 9 bài 2 trang 54, 55, 56 - Cánh diều — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Cánh diều


Bài 11 trang 57 sách bài tập toán 9 - Cánh diều

Áp dụng quy tắc về căn bậc hai của một bình phương, hãy tính: a) \(\sqrt {{2^2}.{{\left( { - 9} \right)}^2}} \) b) \(\sqrt {{{\left( {\sqrt {11} - 4} \right)}^2}} \) c) \(\sqrt {{{\left( {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }}} \right)}^2}} \) d) \(\sqrt {9 + 4\sqrt 5 } \)

Bài 12 trang 57 sách bài tập toán 9 - Cánh diều

Áp dụng quy tắc về căn bậc hai của một tích, hãy tính: a) \(\sqrt {\frac{9}{{100}}.121} \) b) \(\sqrt {17.51.27} \) c) \(\sqrt {600} .\sqrt {{{11}^2} - {5^2}} \) d) \(\sqrt {\sqrt 7 + 3} .\sqrt {3 - \sqrt 7 } \)

Bài 13 trang 57 sách bài tập toán 9 - Cánh diều

Áp dụng quy tắc về căn bậc hai của một thương, hãy tính: a) \(\sqrt {\frac{{1,21}}{{0,49}}} \) b) \(\frac{{\sqrt {15} }}{{\sqrt {735} }}\) c) \(\frac{{\sqrt {12,5} }}{{\sqrt {0,5} }}\) d) \(\frac{{\sqrt 8 }}{{\sqrt {{4^4}{{.2}^3}} }}\)

Bài 14 trang 57 sách bài tập toán 9 - Cánh diều

Rút gọn biểu thức: a) \(\sqrt {\frac{{{{13}^2} - {{12}^2}}}{{225}}} \) b) \(\frac{{\sqrt {{{\left( {6,2} \right)}^2} - {{\left( {5,9} \right)}^2}} }}{{\sqrt {2,43} }}\) c) \(\frac{{2 - \sqrt 2 }}{{\sqrt 2 }}\) d) \(\sqrt {6 + 2\sqrt 5 } - 2\sqrt 5 \)

Bài 15 trang 57 sách bài tập toán 9 - Cánh diều

So sánh: a) \(\frac{{\sqrt {1404} }}{{\sqrt {351} }}\) và \(\sqrt {\frac{{98}}{{25}}} \) b) \(\frac{5}{2}\sqrt {\frac{1}{6}} \) và \(6\sqrt {\frac{1}{{35}}} \) c) \( - 5\sqrt 8 \) và \( - \sqrt {190} \) d) 16 và \(\sqrt {15} .\sqrt {17} \)

Bài 16 trang 57 sách bài tập toán 9 - Cánh diều

Sắp xếp \(4\sqrt 3 ;3\sqrt 4 ;4\sqrt 5 ;5\sqrt 4 ;3\sqrt 6 \) theo thứ tự tăng dần.

Bài 17 trang 58 sách bài tập toán 9 - Cánh diều

Cho các biểu thức \(A = \frac{{\sqrt {{{35}^3} + 1} }}{{\sqrt {{{35}^2} - 34} }};B = \left( {\frac{{\sqrt {14} - \sqrt 7 }}{{1 - \sqrt 2 }} + \frac{{\sqrt {15} - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\frac{1}{{\sqrt 7 - \sqrt 5 }}\) Chứng minh \(A = 6;B = - 2.\)

Bài 18 trang 58 sách bài tập toán 9 - Cánh diều

Rút gọn biểu thức: a) \(\sqrt {20} - \sqrt {45} + \sqrt 5 \) b) \({\left( {\sqrt 6 - \sqrt 5 } \right)^2} + \sqrt {120} \) c) \(\left( {3\sqrt 5 + \sqrt {13} } \right)\left( {\sqrt {45} - \sqrt {13} } \right)\) d) \(\left( {2\sqrt 3 + \sqrt 5 } \right)\sqrt 3 - \sqrt {60} \)

Bài 19 trang 58 sách bài tập toán 9 - Cánh diều

Cho \(a = \sqrt {3 - 2\sqrt 2 } \) và \(b = \sqrt {3 + 2\sqrt 2 } \). Chứng minh: a) \(a - b\) là một số nguyên. b) \(ab\) là một số tự nhiên.

Bài 20 trang 58 sách bài tập toán 9 - Cánh diều

So sánh: a) \(\sqrt {2024} - \sqrt {2023} \) và \(\sqrt {2023} - \sqrt {2022} \) b) \(\sqrt {a + b} \) và \(\sqrt a + \sqrt b \) với \(a > 0,b > 0\).

Bài 21 trang 58 sách bài tập toán 9 - Cánh diều

Tốc độ v (m/s) cần có của một vệ tinh để giữ nó chuyển động tròn ổn định trên quỹ đạo với bản kính r (m) quanh Trái Đất được cho bởi công thức \(v = \sqrt {\frac{{GM}}{r}} .\) Tính tốc độ của một vệ tinh cách tâm Trái Đất 15,92796 . 106 m, biết hằng số hấp dẫn là G = 6,67. 10-11 Nm2/kg2 và khối lượng Trái Đất là M = 5,97 . 1024 kg.

Bài 22 trang 58 sách bài tập toán 9 - Cánh diều

Độ dài đường chéo của một hình vuông lớn hơn độ dài cạnh của nó là 4 cm. Tính độ dài cạnh của hình vuông đó.

Bài 23 trang 58 sách bài tập toán 9 - Cánh diều

Tốc độ v (m/s) của một tàu lượn siêu tốc di chuyển trên một cung tròn bán kính r(m) được cho bởi công thức \(v = \sqrt {ar} \), trong đó a (m/s2) là gia tốc hướng tâm. a) Nếu tàu lượn đang di chuyển với tốc độ 14 m/s và muốn đạt mức gia tốc hướng tâm tối đa là 7 m/s2 thì bán kính tối thiểu của cung tròn phải là bao nhiêu để tàu lượn không văng ra khỏi đường ray? b) Nếu tàu lượn đang di chuyển với tốc độ 8 m/s trên cung tròn bán kính 25 m thì gia tốc hướng tâm là bao nhiêu?


Cùng chủ đề:

Giải SBT Toán 9 bài 1 trang 103, 104, 105 - Cánh diều
Giải SBT Toán 9 bài 1 trang 122, 123, 124 - Cánh diều
Giải SBT Toán 9 bài 2 trang 10, 11, 12 - Cánh diều
Giải SBT Toán 9 bài 2 trang 15, 16, 17 - Cánh diều
Giải SBT Toán 9 bài 2 trang 37, 38, 39 - Cánh diều
Giải SBT Toán 9 bài 2 trang 54, 55, 56 - Cánh diều
Giải SBT Toán 9 bài 2 trang 59, 60, 61 - Cánh diều
Giải SBT Toán 9 bài 2 trang 83, 84, 85 - Cánh diều
Giải SBT Toán 9 bài 2 trang 86, 87, 88 - Cánh diều
Giải SBT Toán 9 bài 2 trang 104, 105, 106 - Cánh diều
Giải SBT Toán 9 bài 2 trang 108, 109, 110 - Cánh diều