1. Định nghĩa
1. Định nghĩa
1. Định nghĩa dãy số
Khẳng định nào sau đây là sai? A. Một dãy số tăng thì bị chặn dưới B. Một dãy số giảm thì bị chặn trên C. Một dãy số bị chặn thì phải tăng hoặc giảm D. Một dãy số không đổi thì bị chặn
Cho dãy số (left( {{u_n}} right)) với ({u_n} = {3.2^n}) a) Viết năm số hạng đầu của dãy số này b) Dự đoán hệ thức truy hồi liên hệ giữa ({u_n}) và ({u_{n - 1}})
Cho dãy số (left( {{u_n}} right)) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần a) Viết năm số hạng đầu của dãy số b) Dự đoán công thức biểu diễn số hạng ({u_n}) theo số hạng ({u_{n - 1}})
Viết năm số chính phương đầu theo thứ tự tăng dần. Từ đó, dự đoán công thức tính số chính phương thứ n.
Cho dãy số (1,frac{1}{2},frac{1}{4},frac{1}{8}, ldots ;) (số hạng sau bằng một nửa số hạng liền trước nó) Công thức tổng quát của dãy số đã cho là:
Cho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công bội (q) a) Tính các số hạng ({u_2},{u_3},{u_4},{u_5}) theo ({u_1}) và (q). b) Dự đoán công thức tính số hạng thứ n theo ({u_1}) và (q).
Cho cấp số cộng (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công sai d a) Tính các số hạng ({u_2},{u_3},{u_4},{u_5}) theo ({u_1}) và d b) Dự đoán công thức tính số hạng tổng quát ({u_n}) theo ({u_1}) và d
Xét dãy số (({u_n})) gồm tất cả các số nguyên dương chia hết cho 5: (5;10;15;20;25;30; ldots ) a) Viết công thức số hạng tổng quát ({u_n}) của dãy số b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi
Cho dãy số (({u_n})) với ({u_n} = 3n + 6). Khẳng định nào sau đây là đúng?
Cho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1} = a) và công bội (q ne 1) Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})
Cho cấp số cộng (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công sai d Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})
a) Xét dãy số (left( {{u_n}} right)) với ({u_n} = 3n - 1). Tính ({u_{n + 1}}) và so sánh với ({u_n}) b) Xét dãy số (left( {{v_n}} right)) với ({v_n} = frac{1}{{{n^2}}}). Tính ({v_{n + 1}}) Và so sánh với ({v_n})
Trong các dãy số cho bởi công thức truy hồi sau, dãy số nào là cấp số nhân? A. ({u_1} = - 1,;{u_{n + 1}} = u_n^2) B. ({u_1} = - 1,;{u_{n + 1}} = 2{u_n}) C. ({u_1} = - 1,;{u_{n + 1}} = {u_n} + 2) D. ({u_1} = - 1,;{u_{n + 1}} = {u_n} - 2)
Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau: a) 1, 4, 16, …; b) (2, - frac{1}{2},frac{1}{8},; ldots )
Xác định công sai, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số cộng sau: a) 4, 9,14, 19,...; b) 1, -1, -3, -5,...
Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (left( {{u_n}} right)) có số hạng tổng quát cho bởi: a) ({u_n} = 3n - 2) b) ({u_n} = {3.2^n}) c) ({u_n} = {left( {1 + frac{1}{n}} right)^n})
Tổng 100 số hạng đầu của dãy số (left( {{u_n}} right))với ({u_n} = 2n - 1) là A. 199 B. ({2^{100}} - 1) C. 10 000 D. 9999