1. Khái niệm phương trình tương đương
1. Định nghĩa hàm số lượng giác
1. Công thức cộng
1. Góc lượng giác
Biểu diễn các góc lượng giác
Cho hai phương trình \(2x - 4 = 0) và (left( {x - 2} right)left( {{x^2} + 1} right) = 0). Tìm và so sánh tập nghiệm của hai phương trình trên
Hoàn thành bảng sau:
a) Cho (a = frac{pi }{4}) và (b = frac{pi }{6}), hãy chứng tỏ (cos left( {a - b} right) = cos acos b + sin asin b).
Trên đồng hồ ở Hình 1.2, kim phút đang chỉ đúng số 2. a) Phải quay kim phút mấy phần của một vòng tròn theo chiều quay ngược chiều kim đồng hồ để nó chỉ đúng số 12?
Trong các khẳng định sau, khẳng định nào là sai?
a) Quan sát Hình 1.19, tìm các nghiệm của phương trình đã cho trong nửa khoảng (left[ {0;2pi } right]) b) Dựa vào tính tuần hoàn của hàm số sin, hãy viết công thức nghiệm của phương trình đã cho.
Cho hai hàm số \(f\left( x \right) = {x^2}\) và \(g\left( x \right) = {x^3}\), với các đồ thị như hình dưới đây.
Lấy b = a trong các công thức cộng, hãy tìm công thức tính: (sin 2a;cos 2a;tan 2a).
a) Đổi từ độ sang rađian các số đo sau
Trong các khẳng định sau, khẳng định nào là sai?
a) Quan sát Hình 1.22a, tìm các nghiệm của phương trình đã cho trong nửa khoảng (left[ { - pi ;pi } right)). b) Dựa vào tính tuần hoản của hàm số cosin, hãy viết công thức nghiệm của phương trình đã cho.
Cho hàm số (y = sin x). a) Xét tính chẵn, lẻ của hàm số
a) Từ các công thức cộng (cos left( {a + b} right)) và (cos left( {a - b} right)), hãy tìm: (cos acos b;sin asin b).
Trong mặt phẳng tọa độ Oxy, vẽ đường tròn tâm O bán kính R = 1. Chọn điểm gốc của đường tròn là giao điểm A(1;0)
Rút gọn biểu thức (M = cos left( {a + b} right)cos left( {a - b} right) - sin left( {a + b} right)sin left( {a - b} right)), ta được