Giải Toán 11 chương 5 Giới hạn. Hàm số liên tục — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống


Lý thuyết Hàm số liên tục

1. Hàm số liên tục tại 1 điểm

Lý thuyết Giới hạn của dãy số

1, Giới hạn hữu hạn của dãy số

Lý thuyết Giới hạn của hàm số

1. Giới hạn hữu hạn của hàm số tại một điểm

Bài 5.18 trang 123

Cho dãy số (left( {{u_n}} right)) với ({u_n} = sqrt {{n^2} + 1} - sqrt n ). Mệnh đề đúng là A. (mathop {lim }limits_{n to + infty } {u_n} = - infty ) B. (mathop {lim }limits_{n to + infty } {u_n} = 1) C. (mathop {lim }limits_{n to + infty } {u_n} = + infty ) D. (mathop {lim }limits_{n to + infty } {u_n} = 0)

Giải mục 1 trang 119, 120

Cho hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{frac{{{x^2} - 1}}{{x - 1}},;x ne 1}{2;,;x = 1}end{array}} right.) Tính giới hạn (mathop {{rm{lim}}}limits_{x to 1} fleft( x right)) và so sánh giá trị này với (fleft( 1 right))

Giải mục 1 trang 105, 106

Cho dãy số (left( {{u_n}} right)) với ({u_n} = frac{{{{left( { - 1} right)}^n}}}{n}) a) Biểu diễn năm số hạng đầu của dãy số này trên trục số b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ ({u_n}) đến 0 nhỏ hơn 0,01?

Bài 5.19 trang 123

Cho ({u_n} = frac{{2 + {2^2} + ldots + {2^n}}}{{{2^n}}}). Giới hạn của dãy số (left( {{u_n}} right)) bằng A. 1 B. 2 C. -1 D. 0

Giải mục 2 trang 120, 121

Cho hai hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{2x;,;0 le x le frac{1}{2}}{1;,frac{1}{2} < x le 1}end{array}} right.) và (gleft( x right) = left{ {begin{array}{*{20}{c}}{x;,0 le x le frac{1}{2}}{1;,frac{1}{2} < x le 1}end{array}} right.)

Giải mục 1 trang 111, 112, 113

Cho hàm số (fleft( x right) = frac{{4 - {x^2}}}{{x - 2}}) a) Tìm tập xác định của hàm số (fleft( x right)) b) Cho dãy số ({x_n} = frac{{2n + 1}}{n}). Rút gọn (fleft( {{x_n}} right)) và tính giới hạn của dãy (left( {{u_n}} right)) với ({u_n} = fleft( {{x_n}} right)) c) Với dãy số (left( {{x_n}} right)) bất kì sao cho ({x_n} ne 2) và ({x_n} to 2), tính (fleft( {{x_n}} right)) và tìm (mathop {{rm{lim}}}limits_{n to + infty } fleft( {{x_n}} right))

Giải mục 2 trang 106,107

Cho hai dãy số (left( {{u_n}} right)) và (left( {{v_n}} right)) với ({u_n} = 2 + frac{1}{n},;;;{v_n} = 3 - frac{2}{n}) Tính và so sánh: (mathop {lim}limits_{n to + infty } left( {{u_n} + {v_n}} right)) và (mathop {lim}limits_{n to + infty } {u_n} + mathop {lim}limits_{n to + infty } {v_n})

Bài 5.20 trang 123

Cho cấp số nhân lùi vô hạn (left( {{u_n}} right)) với ({u_n} = frac{2}{{{3^n}}}). Tổng của cấp số nhân này bằng A. 3 B. 2 C. 1 D. 6

Giải mục 3 trang 121,122

Cho hai hàm số (fleft( x right) = {x^2}) và (gleft( x right) = - x + 1) a) Xét tính liên tục của hai hàm số trên tại (x = 1) b) Tính (L = mathop {{rm{lim}}}limits_{x to 1} ;left[ {fleft( x right) + gleft( x right)} right]) và so sánh L với (fleft( 1 right) + gleft( 1 right)).

Giải mục 2 trang 114, 115

Cho hàm số (fleft( x right) = 1 + frac{2}{{x - 1}}) có đồ thị như Hình 5.4.Giả sử (left( {{x_n}} right)) là dãy số sao cho ({x_n} > 1,;{x_n} to ; + infty ). Tính (fleft( {{x_n}} right)) và (mathop {{rm{lim}}}limits_{n to + infty } fleft( {{x_n}} right))

Giải mục 3 trang 107, 108

Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó ô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi ({u_1},;{u_2}, ldots ,;{u_n}, ldots ) lần lượt là độ dài cạnh của các hình vuông được tô màu. a) Tính tổng ({S_n} = {u_1} + {u_2} + ldots + {u_n}) b) Tìm (S = mathop {lim}limits_{n to + infty } {S_n})

Bài 5.21 trang 123

Cho hàm số (fleft( x right) = sqrt {x + 1} - sqrt {x + 2} ). Mệnh đề đúng là A. (mathop {lim }limits_{x to + infty } fleft( x right) = - infty ) B. (mathop {lim }limits_{x to + infty } fleft( x right) = 0) C. (mathop {lim }limits_{x to + infty } fleft( x right) = - 1) D. (mathop {lim }limits_{x to + infty } fleft( x right) = - frac{1}{2})

Bài 5.14 trang 122

Cho (fleft( x right)) và (gleft( x right)) là các hàm số liên tục tại (x = 1). Biết (fleft( 1 right) = 2) và (mathop {{rm{lim}}}limits_{x to {1^ - }} left[ {2fleft( x right) - gleft( x right)} right] = 3). Tính (gleft( 1 right)).

Giải mục 3 trang 115, 116, 117, 118

Xét hàm số (fleft( x right) = frac{1}{{{x^2}}}) có đồ thị như Hình 5.6. Cho ({x_n} = frac{1}{n}), chứng tỏ rằng (fleft( {{x_n}} right) to + infty )

Giải mục 4 trang 108, 109

Một loại vi khuẩn được nuôi cấy với số lượng ban đầu là 50. Sau mỗi chu kỳ 4 giờ, số lượng của chúng sẽ tăng gấp đôi. a) Dự đoán công thức tính số vi khuẩn ({u_n}) sau chu kì thứ n b) Sau bao lâu, số lượng vi khuẩn sẽ vượt con số 10 000?

Bài 5.7 trang 118

Cho hai hàm số (fleft( x right) = frac{{{x^2} - 1}}{{x - 1}}) và g(x) = x + 1. Khẳng định nào sau đây là đúng?

Bài 5.22 trang 123

Cho hàm số (fleft( x right) = frac{{x - {x^2}}}{{left| x right|}}). Khi đó (mathop {lim }limits_{x to + {0^ - }} fleft( x right)) bằng A. 0 B. 1 C. ( + infty ) D. -1

Xem thêm

Cùng chủ đề:

Giải Toán 11 Chương VIII. Các quy tắc tính xác suất
Giải Toán 11 chương 1 hàm số lượng giác và phương trình lượng giác
Giải Toán 11 chương 2 Dãy số. Cấp số cộng và cấp số nhân
Giải Toán 11 chương 3 Các số đặc trưng đo xu thế trung tâm của mẫu số liệu ghép nhóm của mẫu số liệu
Giải Toán 11 chương 4 Quan hệ song song trong không gian
Giải Toán 11 chương 5 Giới hạn. Hàm số liên tục
Giải Toán 11 tập 1 kết nối tri thức với cuộc sống có lời giải chi tiết
Giải Toán 11 tập 2 kết nối tri thức với cuộc sống có lời giải chi tiết
Giải câu hỏi trang 61, 62, 63 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 1 trang 5 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 1 trang 6, 7 ,8 SGK Toán 11 tập 1 - Kết nối tri thức