Khoảng nghịch biến của hàm số \(y = {x^3} - 6{x^2} + 9x + 1\) là: A. \(\left( { - \infty ;1} \right)\). B. \(\left( {3; + \infty } \right)\). C. \(\left( {1;3} \right)\). D. \(\left( { - \infty ; + \infty } \right)\).
Giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [2; 4] là A. \(M = 6\). B. \(M = 7\). C. \(M = \frac{{19}}{3}\). D. \(M = \frac{{20}}{3}\).
Tổng số các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) là A. 0. B. 1. C. 2. D. 3.
Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào? A. \(y = - {x^3} + 3{x^2} + 1\). B. \(y = {x^3} - 3{x^2} + 3\). C. \(y = - {x^2} + 2x + 1\). D. \(y = \frac{{x + 1}}{{x - 1}}\).
Cho hàm số \(f\left( x \right) = {x^2} + 3\). Khẳng định nào dưới đây là đúng? A. \(\int {f\left( x \right)dx} = 2x + C\). B. \(\int {f\left( x \right)dx} = {x^2} + 3x + C\). C. \(\int {f\left( x \right)dx} = {x^3} + 3x + C\). D. \(\int {f\left( x \right)dx} = \frac{{{x^3}}}{3} + 3x + C\).
Cho hàm số f(x) thỏa mãn: \(f\left( 0 \right) = 1\) và \(f'\left( x \right) = 2\sin x + 1\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} \) bằng A. \(\frac{{{\pi ^2} + 12\pi - 16}}{8}\). B. \(\frac{{{\pi ^2} - 4\pi + 16}}{8}\). C. \(\frac{{{\pi ^2} + 6\pi - 8}}{4}\). D. \(\frac{{{\pi ^2} - 2\pi + 8}}{4}\).
Cho hàm số f(x) liên tục trên \(\mathbb{R}\). Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = - 1\) và \(x = 4\) như hình bên. Khẳng định nào dưới đây là đúng? A. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \). B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \). C. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).
Gọi (H) là hình phẳng giới hạn bởi các đường \(y = 2\sqrt x ,y = 0,x = 0\) và \(x = 4\). Thể tích V của khối tròn xoay sinh ra khi quay hình phẳng (H) quanh trục Ox là A. \(V = 32\). B. \(V = 32\pi \). C. \(V = \frac{{32}}{3}\). D. \(V = \frac{{32\pi }}{3}\).
Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD và M là trung điểm của đoạn thẳng AG. Khi đó \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} \) bằng A. \(\overrightarrow {MG} \). B. \(2\overrightarrow {MG} \). C. \(3\overrightarrow {MG} \). D. \(4\overrightarrow {MG} \).
Cho hình hộp ABCD.A’B’C’D’ có tâm O và gọi G là trọng tâm của tam giác BDA’. Tỉ số \(\frac{{AG}}{{AO}}\) bằng A. \(\frac{1}{3}\). B. \(\frac{1}{2}\). C. \(\frac{2}{3}\). D. \(\frac{3}{4}\).
Trong không gian Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = 2 - t\\y = 3\\z = - 1 + 2t\end{array} \right.\) và mặt phẳng \(\left( P \right):2x - y - 2z + 1 = 0\). Cosin của góc giữa đường thẳng d và mặt phẳng (P) là A. \(\frac{{2\sqrt 5 }}{5}\). B. \(\frac{{\sqrt 5 }}{5}\). C. \(\frac{{2\sqrt 3 }}{5}\). D. \(\frac{{\sqrt 3 }}{5}\).
Trong không gian Oxyz, cho điểm \(M\left( {2; - 1;3} \right)\). Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên Ox, Oy, Oz. Phương trình mặt phẳng (ABC) là A. \(3x - 6y + 2z + 6 = 0\). B. \(3x - 6y + 2z + 6 = 0\). C. \(3x - 2y + 2z - 1 = 0\). D. \(3x - 6y + 2z - 1 = 0\).
Thống kê thời gian trong tuần dành cho đọc sách của một số nhân viên trong một công ty được cho trong bảng sau: a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là A. 13. B. 10. C. 8. D. 6. b) Độ lệch chuẩn của mẫu số liệu ghép nhóm này là (làm tròn kết quả đến hàng phần trăm) A. 1,99. B. 2,02. C. 3,97. D. 4,09.
Trong một nhóm có 25 người, có 15 người thích uống trà, 17 người thích uống cà phê, 9 người thích uống cả trà và cà phê. Chọn ngẫu nhiên một người trong nhóm. Biết rằng người đó thích uống cà phê. Xác suất để người đó thích uống trà là A. \(\frac{9}{{17}}\). B. \(\frac{8}{{17}}\). C. \(\frac{9}{{19}}\). D. \(\frac{{10}}{{19}}\).
Trong số 40 học sinh lớp 12A, có 22 em đăng kí thi ngành Kinh tế, 25 em đăng kí thi ngành Luật, 3 em không đăng kí cả hai ngành này. Chọn ngẫu nhiên một học sinh, biết rằng em đó đăng kí thi ngành luật. Xác suất để em đó đăng kí thi ngành kinh tế là A. \(\frac{3}{5}\). B. \(\frac{2}{5}\). C. \(\frac{3}{7}\). D. \(\frac{4}{7}\).
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) \(y = {x^3} - 3{x^2}\); b) \(y = \frac{{2x + 1}}{{x + 2}}\); c) \(y = \frac{{2{x^2} + x - 2}}{{x - 1}}\).
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau: a) \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\) trên đoạn \(\left[ { - 1;2} \right]\); b) \(y = x + \sqrt {1 - {x^2}} \)
Khi đạp phanh thì một ô tô chuyển động chậm dần đều với gia tốc \(10m/{s^2}\). a) Nếu khi bắt đầu đạp phanh ô tô đang chạy với vận tốc 54km/h thì sau bao lâu kể từ khi đạp phanh, ô tô sẽ dừng lại? b) Nếu ô tô dừng lại trong vòng 20m sau khi đạp phanh thì vận tốc lớn nhất của ô tô ngay trước lúc đạp phanh (tính bằng km/h) có thể là bao nhiêu?
Tìm hàm số f(x) biết rằng \(f'\left( x \right) = x - \frac{1}{{{x^2}}} + 2\) và \(f\left( 1 \right) = 2\).
Tính các tích phân sau: a) \(I = \int\limits_0^2 {\left| {{x^2} - x} \right|dx} \); b) \(I = \int\limits_0^1 {{{\left( {2x - 1} \right)}^3}dx} \); c) \(I = \int\limits_0^{\frac{\pi }{4}} {{{\left( {3\sin x - \frac{2}{{{{\cos }^2}x}}} \right)}^3}dx} \); d) \(I = \int\limits_1^2 {\left( {2{e^x} - \frac{1}{x}} \right)dx} \).