Giải toán 12 Bài tập cuối chương 4 trang 27,28 Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Bài 4.20 trang 27

Một nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là A. \(F\left( x \right) = 2\cos 2x\). B. \(F\left( x \right) = - \cos 2x\). C. \(F\left( x \right) = \frac{1}{2}\cos 2x\). D. \(F\left( x \right) = \frac{{ - 1}}{2}\cos 2x\).

Bài 4.21 trang 27

Họ tất cả các nguyên hàm của hàm số \(2{e^x}\) là A. \(2x{e^x} + C\). B. \( - 2{e^x} + C\). C. \(2{e^x}\). D. \(2{e^x} + C\).

Bài 4.22 trang 27

Nguyên hàm F(x) của hàm số \(f\left( x \right) = {e^x} - 3{e^{ - x}}\) thỏa mãn \(F\left( 0 \right) = 4\) là A. \(F\left( x \right) = {e^x} - 3{e^{ - x}}\). B. \(F\left( x \right) = {e^x} + 3{e^{ - 2x}}\). C. \(F\left( x \right) = {e^x} + 3{e^{ - x}}\). D. \(F\left( x \right) = {e^x} + 3{e^{ - x}} + 4\).

Bài 4.23 trang 27

Cho hàm số f(x) có đạo hàm f’(x) liên tục trên \(\mathbb{R}\), \(f\left( 1 \right) = 16\) và \(\int\limits_1^3 {f'\left( x \right)dx} = 4\). Khi đó, giá trị của f(3) bằng A. 20. B. 16. C. 12. D. 10.

Bài 4.24 trang 27

Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x,y = - {x^2} + 4x\) và hai đường thẳng \(x = 0,x = 3\) là A. \( - 9\). B. 9. C. \(\frac{{16}}{3}\). D. \(\frac{{20}}{3}\).

Bài 4.25 trang 27

Cho đồ thị hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 2;2} \right]\) như Hình 4.32. Biết \(\int\limits_{ - 2}^{ - 1} {f\left( x \right)dx} = \int\limits_1^2 {f\left( x \right)dx} = \frac{{ - 22}}{{15}}\) và \(\int\limits_{ - 1}^1 {f\left( x \right)dx} = \frac{{76}}{{15}}\). Khi đó, diện tích của hình phẳng được tô màu là A. 8. B. \(\frac{{22}}{{15}}\). C. \(\frac{{32}}{{15}}\). D. \(\frac{{76}}{{15}}\).

Bài 4.26 trang 28

Cho hình phẳng (S) giới hạn bởi đồ thị hàm số \(y = \sqrt {1 - {x^2}} \), trục hoành và hai đường thẳng \(x = - 1,x = 1\). Thể tích của khối tròn xoay khi quay (S) quanh Ox là A. \(\frac{{3\pi }}{4}\). B. \(\frac{{3\pi }}{2}\). C. \(\frac{{2\pi }}{3}\). D. \(\frac{{4\pi }}{3}\).

Bài 4.27 trang 28

Một vật chuyển động có gia tốc là \(a\left( t \right) = 3{t^2} + t\left( {m/{s^2}} \right)\). Biết rằng vận tốc ban đầu của vật là 2m/s. Vận tốc của vật đó sau 2 giây là A. 8m/s. B. 10m/s. C. 12m/s. D. 16m/s.

Bài 4.28 trang 28

Tìm họ tất cả các nguyên hàm của các hàm số sau: a) \(y = {2^x} - \frac{1}{x}\); b) \(y = x\sqrt x + 3\cos x - \frac{2}{{{{\sin }^2}x}}\).

Bài 4.29 trang 28

Tìm một nguyên hàm F(x) của hàm số \(f\left( x \right) = 2\cos x + \frac{1}{{{{\sin }^2}x}}\) thỏa mãn điều kiện \(F\left( {\frac{\pi }{4}} \right) = - 1\).

Bài 4.30 trang 28

Một viên đạn được bắn lên từ mặt đất theo phương thẳng đứng với vận tốc ban đầu là 30m/s. Gia tốc trọng trường là 9,8\(m/{s^2}\). Tìm vận tốc của viên đạn ở thời điểm 2 giây.

Bài 4.31 trang 28

Cá hồi Thái Bình Dương đến mùa sinh sản thường bơi từ biển ngược dòng vào sông và đến thượng nguồn các dòng sông để đẻ trứng. Giả sử cá bơi ngược dòng sông với vận tốc là \(v\left( t \right) = \frac{{ - 2t}}{5} + 4\left( {km/h} \right)\). Nếu coi thời điểm ban đầu \(t = 0\) là lúc cá bắt đầu bơi vào dòng sông thì khoảng cách xa nhất mà con cá có thể bơi được là bao nhiêu?

Bài 4.32 trang 28

Tính các tích phân sau: a) \(\int\limits_1^4 {\left( {{x^3} - 2\sqrt x } \right)dx} \); b) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\cos x - \sin x} \right)dx} \); c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{{dx}}{{{{\sin }^2}x}}} \); d) \(\int\limits_1^{16} {\frac{{x - 1}}{{\sqrt x }}dx} \).

Bài 4.33 trang 28

Tính diện tích hình phẳng giới hạn bởi các đường \(y = {e^x},y = x,x = 0\) và \(x = 1\).

Bài 4.34 trang 28

Tính thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: a) \(y = 1 - {x^2},y = 0,x = - 1,x = 1\); b) \(y = \sqrt {25 - {x^2}} ,y = 0,x = 2,x = 4\).

Bài 4.35 trang 28

Nghệ thuật làm gốm có lịch sử phát triển lâu đời và vẫn còn tồn tại cho đến ngày nay. Giả sử một bình gốm có mặt trong bình là một mặt tròn xoay sinh ra khi cho phần đồ thị của hàm số \(y = \frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5\left( {0 \le x \le 30} \right)\) (x, y tính theo cm) quay tròn quanh bệ gồm có trục trùng với trục hoành Ox. Hỏi để hoàn thành bình gốm đó ta cần sử dụng bao nhiêu \(c{m^3}\) đất sét, biết rằng bình gốm đó có độ dày không đổi là 1cm.


Cùng chủ đề:

Giải mục 5 trang 37,38 SGK Toán 12 tập 2 - Kết nối tri thức
Giải mục 6 trang 38,39 SGK Toán 12 tập 2 - Kết nối tri thức
Giải toán 12 Bài tập cuối chương 1 trang 42, 43, 44 Kết nối tri thức
Giải toán 12 Bài tập cuối chương 2 trang 73, 74 Kết nối tri thức
Giải toán 12 Bài tập cuối chương 3 trang 85, 86 Kết nối tri thức
Giải toán 12 Bài tập cuối chương 4 trang 27,28 Kết nối tri thức
Giải toán 12 Bài tập ôn tập cuối năm trang 90,91,92 Kết nối tri thức
Giải toán 12 Bài tập tập cuối chương 6 trang 79,80 Kết nối tri thức
Giải toán 12 Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra trang 91 Kết nối tri thức
Giải toán 12 Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra trang 91 Kết nối tri thức
Giải toán 12 bài 1 trang 5, 6, 7 Kết nối tri thức