Cho hàm số y = ax2. a) Tìm a, biết đồ thị hàm số đi qua điểm M(-4;8). b) Tìm trên đồ thị hàm số điểm D có hoành độ x = -2.
Nhiệt lượng toả ra Q(J) trong 1 giây trên một đoạn dây dẫn khi có dòng điện với cường độ I(A) chạy qua được tính theo công thức Q = aI2. Biết khi I = 2 (A) thì Q = 3,4 (J). Hãy xác định Q khi I lần lượt bằng 0,5 A; 1 A; 1,2 A.
Một viên bi lăn từ vị trí cao nhất của một mặt phẳng nghiêng dài 5 m (Hình 6.10). Quãng đường s (m) viên bi lăn được sau t (s) kể từ khi bắt đầu chuyển động được cho bởi công thức s = 0,05t2 . Tính thời gian viên bi lăn hết chiều dài mặt phẳng nghiêng.
Giải các phương trình sau: a) \(2{x^2} - 3x - 2 = 0\) b) \(3{y^2} + 4 = y\) c) \({z^2} + 2\sqrt 3 z + 2 = 0\) d) \( - {x^2} + 4\sqrt 3 z - 12 = 0\)
Với mỗi trường hợp sau, đã cho biết một nghiệm x1 của phương trình, hãy tìm nghiệm còn lại: a) \(2{x^2} - 7x + 3 = 0;{x_1} = 3\) b) \(3{x^2} - 4x - 6 + 4\sqrt 2 = 0;{x_1} = \sqrt 2 \) c) \(2{x^2} + 7x + 3 = 0;{x_1} = - \frac{1}{2}\) d) \({x^2} - 4mx + m + 2 = 0;{x_1} = 1\)
Cho phương trình \(3{x^2} - x - 1 = 0\) có hai nghiệm \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của các biểu thức sau: A = \(\left( {3{x_1} - 1} \right)(3{x_2} - 1)\) B = \({x_1}^2 + {x_2}^2\)
Tìm hai số u,v trong mỗi trường hợp sau: a) u + v = 14, uv = 45 và u < v b) u + v = 2, uv = 5.
Cạnh huyền của một tam giác vuông bằng 17 cm. Hai cạnh góc vuông có độ dài hơn kém nhau 7 cm. Tính diện tích của tam giác vuông đó.
Sau hai năm, số dân của một thành phố tăng từ 9000000 người lên 9400356 người. Tính tốc độ gia tăng dân số trung bình mỗi năm của thành phố đó.
Quãng đường từ A đến B dài 90 km. Một người đi xe máy từ A đến B. Khi đến B, người đó nghỉ 30 phút rồi quay trở về A với tốc độ lớn hơn tốc dộ lúc đi 9 km/h. Thời gian kể từ lúc từ A đến lúc trở về A là 5 giờ. Tính tốc độ xe máy lúc đi từ A đến B.
Cho hàm số f(x) = -3x2. Khẳng định nào sau đây đúng? A. f(-1) = 3. B. f(-2) = 12. C. f(-3) = -27 D. f(-4) = -24
Đồ thị hàm số y = \(\frac{1}{4}\)x2 không đi qua điểm A. M(2;1) B. N(-2;1) C. P(-4;4) D. Q(4;1)
Hình 6.11 là đồ thị hàm số y = f(x) = ax2 (a\( \ne \)0). Gí trị của a bằng A. 3 B. \(\frac{1}{3}\) C. 1 D. \(\frac{1}{2}\)
Phương trình nào sau đây là phương trình bậc hai? A. \(\sqrt 2 {x^2} - 1 = 0\) B. \({x^2} - \frac{3}{x} + 1 = 0\) C. \({t^2} - 2{t^3} = 0\) D. \(3x + 7 = 0\)
Phương trình nào sau đây có nghiệm x = 2? A. \({x^2} - 6x + 5 = 0\) B. \({x^2} - 5x + 6 = 0\) C. \(2{x^2} + 3x - 2 = 0\) D. \(3{x^2} + 5x + 2 = 0\)
Phương trình nào sau đây vô nghiệm? A. \(x(2x + 1) = \sqrt 5 \) B. \(\frac{{{x^2} - 1}}{2} = 2(x - 3)\) C. \(3{x^2} = x\left( {x - 5} \right)\) D. \({x^2} - 2\sqrt 3 x + 3 = 0\)
Hai số u,v thoả mãn u + v = 19 và uv = 48 là các nghiệm của phương trình A. \({t^2} + 19t + 48 = 0\) B. \({t^2} + 19t - 48 = 0\) C. \({t^2} - 19t + 48 = 0\) D. \({t^2} - 48t + 19 = 0\)