Trắc nghiệm toán 8 bài 1 chương 3 cánh diều có đáp án — Không quảng cáo

Bài tập trắc nghiệm Toán 8 - Cánh diều có đáp án Bài tập trắc nghiệm Chương 3 Hàm số và đồ thị


Trắc nghiệm Bài 1: Hàm số Toán 8 Cánh diều

Đề bài

Câu 1 :

Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y.

Chọn đáp án đúng

  • A.
    y được gọi là hàm số của biến số x
  • B.
    x được gọi là hàm số của biến số y
  • C.
    Cả A và B đều đúng
  • D.
    Cả A và B đều sai
Câu 2 :

Cho bảng giá trị sau:

x 12 -5 10 6 4
y 4 2 1 2 5

Chọn câu đúng

  • A.
    y là hàm số của biến số x
  • B.
    x là hàm số của biến số y
  • C.
    y tỉ lệ thuận với x
  • D.
    y tỉ lệ nghịch với x
Câu 3 :

Trong các công thức dưới đây, công thức nào thể hiện y không phải là hàm số của x?

  • A.
    \(y = x + 1\)
  • B.
    \(y = \frac{1}{2}x\)
  • C.
    \(y = {x^2}\)
  • D.
    \({y^2} = x\)
Câu 4 :

Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y...f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

Đáp án đúng điền vào “…”.

  • A.
    \( > \)
  • B.
    \( < \)
  • C.
    \( = \)
  • D.
    \( \ne \)
Câu 5 :

Nhiệt độ N của một nhà máy ấp trứng vịt được cài đặt luôn bằng 37 o C không thay đổi theo thời gian t. Khi đó, công thức xác định hàm số N(t) của nhiệt độ theo thời gian là:

  • A.
    \(N\left( t \right) = 37\)
  • B.
    \(N\left( t \right) > 37\)
  • C.
    \(N\left( t \right) < 37\)
  • D.
    \(N\left( t \right) \ge 37\)
Câu 6 :

Một hàm số được cho bởi công thức \(f\left( x \right) = \frac{{ - 1}}{2}x + 5.\) Khẳng định nào sau đây là đúng?

  • A.
    \(f\left( 1 \right) > f\left( 2 \right)\)
  • B.
    \(f\left( 1 \right) = f\left( 2 \right)\)
  • C.
    \(f\left( 1 \right) < f\left( 2 \right)\)
  • D.
    \(f\left( 1 \right) \le f\left( 2 \right)\)
Câu 7 :

Một hình lập phương có độ dài cạnh là x (cm) và thể tích là \(V\left( {c{m^3}} \right)\).

Chọn khẳng định đúng.

  • A.
    \(V = {x^2},\) V là hàm số của biến số x.
  • B.
    \(V = {x^2},\) V là không hàm số của biến số x.
  • C.
    \(V = {x^3},\) V là hàm số của biến số x.
  • D.
    \(V = {x^3},\) V không là hàm số của biến số x.
Câu 8 :

Nhà bác học Galileo Galilei là người đầu tiên phát hiện ra quan hệ giữa quãng đường chuyển động y(m) và thời gian chuyển động x (giây) của một vật được biểu diễn gần đúng bởi hàm số \(y = 5{x^2}.\) Quãng đường mà vật đó chuyển động được sau 4 giây là:

  • A.
    60m
  • B.
    70m
  • C.
    80m
  • D.
    90m
Câu 9 :

Cho hàm số \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\) So sánh f(x) và f(-x)

  • A.
    \(f\left( x \right) < f\left( { - x} \right)\)
  • B.
    \(f\left( x \right) = f\left( { - x} \right)\)
  • C.
    \(f\left( x \right) > f\left( { - x} \right)\)
  • D.
    Không so sánh được f(x) và f(-x)
Câu 10 :

Cho hàm số \(f\left( x \right) = 30x + 100.\) Để \(f\left( x \right) = 190\) thì giá trị của x là:

  • A.
    \(x =  - 4\)
  • B.
    \(x = 4\)
  • C.
    \(x =  - 3\)
  • D.
    \(x = 3\)
Câu 11 :

Cho hàm số \(f\left( x \right) = \frac{{ - 3}}{4}x.\) Để f(x) nhận giá trị dương thì

  • A.
    \(x > 0\)
  • B.
    \(x < 0\)
  • C.
    \(x = 0\)
  • D.
    Không xác định được
Câu 12 :

Cho hàm số: \(f\left( x \right) = \frac{3}{4}{x^2} + 5.\) Khẳng định nào sau đây là đúng?

  • A.
    \(f\left( x \right)\) nhận giá trị dương với mọi giá trị của x
  • B.
    \(f\left( x \right)\) nhận giá trị âm với mọi giá trị của x
  • C.
    \(f\left( x \right) = 0\) với mọi giá trị của x
  • D.
    Cả A, B, C đều sai.
Câu 13 :

Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1\;khi\;x \ge \frac{{ - 1}}{2}\\ - 2x - 1\;khi\;x < \frac{{ - 1}}{2}\end{array} \right.\). Chọn khẳng định đúng.

  • A.
    \(f\left( { - 1} \right) + f\left( 2 \right) =  - 6\)
  • B.
    \(f\left( { - 1} \right) + f\left( 2 \right) = 6\)
  • C.
    \(f\left( { - 1} \right) + f\left( 2 \right) = 1\)
  • D.
    \(f\left( { - 1} \right) + f\left( 2 \right) =  - 4\)
Câu 14 :

Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}.\) Khẳng định nào dưới đây đúng?

  • A.
    \(f\left( 1 \right) + \frac{1}{2} =  - 1\)
  • B.
    \(f\left( 1 \right) + \frac{1}{2} = 0\)
  • C.
    \(f\left( 1 \right) + \frac{1}{2} = 2\)
  • D.
    \(f\left( 1 \right) + \frac{1}{2} = 1\)
Câu 15 :

Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ nghịch với x theo hệ số \(a = 12.\)

Khẳng định nào sau đây đúng?

  • A.
    \(f\left( { - x} \right) = f\left( x \right)\)
  • B.
    \(f\left( { - x} \right) =  - f\left( x \right)\)
  • C.
    \(f\left( { - x} \right) = 2f\left( x \right)\)
  • D.
    \(f\left( { - x} \right) =  - 2f\left( x \right)\)
Câu 16 :

Cho hàm số \(y = f\left( x \right) = kx\) (k là hằng số, \(k \ne 0\)). Chọn đáp án đúng.

  • A.
    \(f\left( {{x_1} + {x_2}} \right) = f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)
  • B.
    \(f\left( {{x_1} + {x_2}} \right) > f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)
  • C.
    \(f\left( {{x_1} + {x_2}} \right) < f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)
  • D.
    \(f\left( {{x_1} + {x_2}} \right) = f\left( {{x_1}} \right) - f\left( {{x_2}} \right)\)
Câu 17 :

Hàm số f(x) được cho bởi bảng sau

x 2 3 4
f(x) -4 -6 -8

Hàm số trên được cho bởi công thức:

  • A.
    \(f\left( x \right) =  - x\)
  • B.
    \(f\left( x \right) = 2x\)
  • C.
    \(f\left( x \right) =  - 2x\)
  • D.
    \(f\left( x \right) = \frac{{ - 1}}{2}x\)
Câu 18 :

Cho hàm số \(f\left( x \right) = a{x^2} + ax + 1.\) Biết rằng \(f\left( 1 \right) = 3\), khi đó giá trị của a là:

  • A.
    \(a = 1\)
  • B.
    \(a = 2\)
  • C.
    \(a =  - 1\)
  • D.
    \(a =  - 2\)
Câu 19 :

Có bao nhiêu giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0?

  • A.
    0 giá trị
  • B.
    1 giá trị
  • C.
    2 giá trị
  • D.
    Vô số giá trị
Câu 20 :

Giầy cỡ 36 ứng với khoảng cách d từ gót chân đến mũi ngón chân là 23cm. Khi khoảng cách d tăng (hay giảm) \(\frac{2}{3}cm\) thì cỡ giầy tăng (hay giảm) 1 số. Ta có bảng:

d(cm) 19 23
Cỡ giầy 33 36

Hãy chọn bảng đúng trong các bảng dưới đây:

  • A.
    d(cm) 19 21 23
    Cỡ giầy 32 33 36
  • B.
    d(cm) 19 22 23
    Cỡ giầy 29 33 36
  • C.
    d(cm) 19 20 23
    Cỡ giầy 31 33 36
  • D.
    d(cm) 19 21 23
    Cỡ giầy 30 33 36
Câu 21 :

Cho hàm số \(y = f\left( x \right)\) được xác định bởi tương ứng giữa số que diêm (f(x)) và số hình vuông tạo thành (x) được nêu trong bảng sau:

Tính \(f\left( {12} \right)\)

  • A.
    \(f\left( {12} \right) = 32\)
  • B.
    \(f\left( {12} \right) = 33\)
  • C.
    \(f\left( {12} \right) = 34\)
  • D.
    \(f\left( {12} \right) = 37\)
Câu 22 :

Cho hai hàm số: \(f\left( x \right) =  - 6{x^2} + 12x - 7,g\left( x \right) = 3{x^2} + 6x + 4\)

Khẳng định nào sau đây là đúng?

  • A.
    \(f\left( x \right) > 0,g\left( x \right) > 0\) với mọi x
  • B.
    \(f\left( x \right) < 0,g\left( x \right) > 0\) với mọi x
  • C.
    \(f\left( x \right) = 0,g\left( x \right) > 0\) với mọi x
  • D.
    \(f\left( x \right) > 0,g\left( x \right) = 0\) với mọi x

Lời giải và đáp án

Câu 1 :

Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y.

Chọn đáp án đúng

  • A.
    y được gọi là hàm số của biến số x
  • B.
    x được gọi là hàm số của biến số y
  • C.
    Cả A và B đều đúng
  • D.
    Cả A và B đều sai

Đáp án : A

Phương pháp giải :
Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Lời giải chi tiết :
Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Câu 2 :

Cho bảng giá trị sau:

x 12 -5 10 6 4
y 4 2 1 2 5

Chọn câu đúng

  • A.
    y là hàm số của biến số x
  • B.
    x là hàm số của biến số y
  • C.
    y tỉ lệ thuận với x
  • D.
    y tỉ lệ nghịch với x

Đáp án : A

Phương pháp giải :
Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Lời giải chi tiết :
Từ bảng giá trị ta thấy với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y nên y là hàm số của biến số x.

Tuy nhiên, x không phải là hàm số của biến số y, vì với y = 2, ta có 2 giá trị x tương ứng x = -5 và x = 6.

Câu 3 :

Trong các công thức dưới đây, công thức nào thể hiện y không phải là hàm số của x?

  • A.
    \(y = x + 1\)
  • B.
    \(y = \frac{1}{2}x\)
  • C.
    \(y = {x^2}\)
  • D.
    \({y^2} = x\)

Đáp án : D

Phương pháp giải :
Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Lời giải chi tiết :
Xét công thức: \({y^2} = x\)

Với \(x = 4\) thì \({y^2} = 4\) nên \(y = 2\) hoặc \(y =  - 2\)

Ta thấy với mỗi giá trị của x có tương ứng 2 giá trị của y nên \({y^2} = x\) không phải là hàm số của x.

Các công thức còn lại ta đều thấy với mỗi giá trị của x có duy nhất một giá trị tương ứng của y nên y là hàm số của x.

Câu 4 :

Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y...f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

Đáp án đúng điền vào “…”.

  • A.
    \( > \)
  • B.
    \( < \)
  • C.
    \( = \)
  • D.
    \( \ne \)

Đáp án : C

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :
Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Câu 5 :

Nhiệt độ N của một nhà máy ấp trứng vịt được cài đặt luôn bằng 37 o C không thay đổi theo thời gian t. Khi đó, công thức xác định hàm số N(t) của nhiệt độ theo thời gian là:

  • A.
    \(N\left( t \right) = 37\)
  • B.
    \(N\left( t \right) > 37\)
  • C.
    \(N\left( t \right) < 37\)
  • D.
    \(N\left( t \right) \ge 37\)

Đáp án : A

Phương pháp giải :
Sử dụng khái niệm hàm hằng: Khi x thay đổi mà y luôn nhận một giá trị không đổi c thì y được gọi là hàm hằng, kí hiệu \(y = f\left( x \right) = c\)
Lời giải chi tiết :
Vì nhiệt độ không đổi và luôn bằng 37 o C với mọi giá trị của biến số t nên ta có hàm hằng\(N\left( t \right) = 37\)
Câu 6 :

Một hàm số được cho bởi công thức \(f\left( x \right) = \frac{{ - 1}}{2}x + 5.\) Khẳng định nào sau đây là đúng?

  • A.
    \(f\left( 1 \right) > f\left( 2 \right)\)
  • B.
    \(f\left( 1 \right) = f\left( 2 \right)\)
  • C.
    \(f\left( 1 \right) < f\left( 2 \right)\)
  • D.
    \(f\left( 1 \right) \le f\left( 2 \right)\)

Đáp án : A

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :

Ta có: \(f\left( 1 \right) = \frac{{ - 1}}{2}.1 + 5 = \frac{9}{2};f\left( 2 \right) = \frac{{ - 1}}{2}.2 + 5 = 4\)

Vì \(\frac{9}{2} > 4\) nên \(f\left( 1 \right) > f\left( 2 \right)\)

Câu 7 :

Một hình lập phương có độ dài cạnh là x (cm) và thể tích là \(V\left( {c{m^3}} \right)\).

Chọn khẳng định đúng.

  • A.
    \(V = {x^2},\) V là hàm số của biến số x.
  • B.
    \(V = {x^2},\) V là không hàm số của biến số x.
  • C.
    \(V = {x^3},\) V là hàm số của biến số x.
  • D.
    \(V = {x^3},\) V không là hàm số của biến số x.

Đáp án : C

Phương pháp giải :
Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.
Lời giải chi tiết :

Thể tích của hình lập phương là: \(V = {x^3}\)

Vì mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của V nên V là hàm số của biến số x.

Câu 8 :

Nhà bác học Galileo Galilei là người đầu tiên phát hiện ra quan hệ giữa quãng đường chuyển động y(m) và thời gian chuyển động x (giây) của một vật được biểu diễn gần đúng bởi hàm số \(y = 5{x^2}.\) Quãng đường mà vật đó chuyển động được sau 4 giây là:

  • A.
    60m
  • B.
    70m
  • C.
    80m
  • D.
    90m

Đáp án : C

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :

Xét hàm số \(y = 5{x^2}.\)

Quãng đường vật chuyển động được sau 4 giây ứng với \(x = 4\)

Do đó, \(y = {5.4^2} = 5.16 = 80\left( m \right)\)

Câu 9 :

Cho hàm số \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\) So sánh f(x) và f(-x)

  • A.
    \(f\left( x \right) < f\left( { - x} \right)\)
  • B.
    \(f\left( x \right) = f\left( { - x} \right)\)
  • C.
    \(f\left( x \right) > f\left( { - x} \right)\)
  • D.
    Không so sánh được f(x) và f(-x)

Đáp án : B

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :

Ta có: \(f\left( { - x} \right) = 3{\left( { - x} \right)^4} - 3{\left( { - x} \right)^2} - 1 = 3{x^4} - 3{x^2} - 1\)

Mà \(f\left( x \right) = 3{x^4} - 3{x^2} - 1.\)

Do đó, \(f\left( x \right) = f\left( { - x} \right)\)

Câu 10 :

Cho hàm số \(f\left( x \right) = 30x + 100.\) Để \(f\left( x \right) = 190\) thì giá trị của x là:

  • A.
    \(x =  - 4\)
  • B.
    \(x = 4\)
  • C.
    \(x =  - 3\)
  • D.
    \(x = 3\)

Đáp án : D

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :

Với \(f\left( x \right) = 190\) thì ta có: \(190 = 30x + 100\)

\(30x = 90\)

\(x = 3\)

Câu 11 :

Cho hàm số \(f\left( x \right) = \frac{{ - 3}}{4}x.\) Để f(x) nhận giá trị dương thì

  • A.
    \(x > 0\)
  • B.
    \(x < 0\)
  • C.
    \(x = 0\)
  • D.
    Không xác định được

Đáp án : B

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :

Để f(x) nhận giá trị dương thì \(f\left( x \right) > 0\) tức là \(\frac{{ - 3}}{4}.x > 0\)

Mà \(\frac{{ - 3}}{4} < 0\) nên \(x < 0\)

Câu 12 :

Cho hàm số: \(f\left( x \right) = \frac{3}{4}{x^2} + 5.\) Khẳng định nào sau đây là đúng?

  • A.
    \(f\left( x \right)\) nhận giá trị dương với mọi giá trị của x
  • B.
    \(f\left( x \right)\) nhận giá trị âm với mọi giá trị của x
  • C.
    \(f\left( x \right) = 0\) với mọi giá trị của x
  • D.
    Cả A, B, C đều sai.

Đáp án : A

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :

Vì \({x^2} \ge 0\) với mọi số thực x nên \(\frac{3}{4}{x^2} \ge 0\) với mọi số thực x.

Do đó, \(\frac{3}{4}{x^2} + 5 > 0\) với mọi số thực x.

Suy ra: \(f\left( x \right) > 0\) với mọi số thực x.

Vậy \(f\left( x \right)\) nhận giá trị dương với mọi giá trị của x.

Câu 13 :

Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1\;khi\;x \ge \frac{{ - 1}}{2}\\ - 2x - 1\;khi\;x < \frac{{ - 1}}{2}\end{array} \right.\). Chọn khẳng định đúng.

  • A.
    \(f\left( { - 1} \right) + f\left( 2 \right) =  - 6\)
  • B.
    \(f\left( { - 1} \right) + f\left( 2 \right) = 6\)
  • C.
    \(f\left( { - 1} \right) + f\left( 2 \right) = 1\)
  • D.
    \(f\left( { - 1} \right) + f\left( 2 \right) =  - 4\)

Đáp án : B

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :

Với \(x =  - 1 < \frac{{ - 1}}{2}\) thì ta có: \(f\left( { - 1} \right) =  - 2\left( { - 1} \right) - 1 = 2 - 1 = 1\)

Với \(x = 2 > \frac{{ - 1}}{2}\) thì ta có: \(f\left( 2 \right) = 2.2 + 1 = 4 + 1 = 5\)

Do đó, \(f\left( { - 1} \right) + f\left( 2 \right) = 1 + 5 = 6\)

Câu 14 :

Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ thuận với x theo hệ số tỷ lệ \(\frac{1}{2}.\) Khẳng định nào dưới đây đúng?

  • A.
    \(f\left( 1 \right) + \frac{1}{2} =  - 1\)
  • B.
    \(f\left( 1 \right) + \frac{1}{2} = 0\)
  • C.
    \(f\left( 1 \right) + \frac{1}{2} = 2\)
  • D.
    \(f\left( 1 \right) + \frac{1}{2} = 1\)

Đáp án : D

Phương pháp giải :

+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.

Lời giải chi tiết :

Vì y tỉ lệ thuận với x theo hệ số tỷ lệ  \(\frac{1}{2}\) nên \(y = f\left( x \right) = \frac{1}{2}x\)

Ta có: \(f\left( 1 \right) = \frac{1}{2}.1 = \frac{1}{2}\) nên \(f\left( 1 \right) + \frac{1}{2} = 1\)

Câu 15 :

Cho hàm số \(y = f\left( x \right)\), biết rằng y tỉ lệ nghịch với x theo hệ số \(a = 12.\)

Khẳng định nào sau đây đúng?

  • A.
    \(f\left( { - x} \right) = f\left( x \right)\)
  • B.
    \(f\left( { - x} \right) =  - f\left( x \right)\)
  • C.
    \(f\left( { - x} \right) = 2f\left( x \right)\)
  • D.
    \(f\left( { - x} \right) =  - 2f\left( x \right)\)

Đáp án : B

Phương pháp giải :

+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.

Lời giải chi tiết :

Vì y tỉ lệ nghịch với x theo hệ số \(a = 12\) nên \(xy = 12,\) do đó \(y = f\left( x \right) = \frac{{12}}{x}\)

Ta có: \(f\left( { - x} \right) = \frac{{12}}{{ - x}} =  - \frac{{12}}{x} =  - f\left( x \right)\)

Vậy \(f\left( { - x} \right) =  - f\left( x \right)\)

Câu 16 :

Cho hàm số \(y = f\left( x \right) = kx\) (k là hằng số, \(k \ne 0\)). Chọn đáp án đúng.

  • A.
    \(f\left( {{x_1} + {x_2}} \right) = f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)
  • B.
    \(f\left( {{x_1} + {x_2}} \right) > f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)
  • C.
    \(f\left( {{x_1} + {x_2}} \right) < f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)
  • D.
    \(f\left( {{x_1} + {x_2}} \right) = f\left( {{x_1}} \right) - f\left( {{x_2}} \right)\)

Đáp án : A

Phương pháp giải :

+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.

Lời giải chi tiết :

Ta có: \(f\left( {{x_1}} \right) = k{x_1},f\left( {{x_2}} \right) = k{x_2},f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = k{x_1} + k{x_2} = k\left( {{x_1} + {x_2}} \right)\)

\(f\left( {{x_1} + {x_2}} \right) = k\left( {{x_1} + {x_2}} \right)\)

Do đó, \(f\left( {{x_1} + {x_2}} \right) = f\left( {{x_1}} \right) + f\left( {{x_2}} \right)\)

Câu 17 :

Hàm số f(x) được cho bởi bảng sau

x 2 3 4
f(x) -4 -6 -8

Hàm số trên được cho bởi công thức:

  • A.
    \(f\left( x \right) =  - x\)
  • B.
    \(f\left( x \right) = 2x\)
  • C.
    \(f\left( x \right) =  - 2x\)
  • D.
    \(f\left( x \right) = \frac{{ - 1}}{2}x\)

Đáp án : C

Phương pháp giải :

+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.

Lời giải chi tiết :

Với \(x = 2\) ta có: \(f\left( 2 \right) =  - 4 =  - 2.2\)

Với \(x = 3\) ta có: \(f\left( 3 \right) =  - 6 =  - 2.3\)

Với \(x = 4\) ta có: \(f\left( 4 \right) =  - 8 =  - 2.4\)

Do đó, \(f\left( x \right) =  - 2x\)

Câu 18 :

Cho hàm số \(f\left( x \right) = a{x^2} + ax + 1.\) Biết rằng \(f\left( 1 \right) = 3\), khi đó giá trị của a là:

  • A.
    \(a = 1\)
  • B.
    \(a = 2\)
  • C.
    \(a =  - 1\)
  • D.
    \(a =  - 2\)

Đáp án : A

Phương pháp giải :
Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).
Lời giải chi tiết :

Ta có: \(f\left( 1 \right) = a{.1^2} + a.1 + 1 = 2a + 1\)

Mà \(f\left( 1 \right) = 3\) nên \(2a + 1 = 3\)

\(2a = 2\)

\(a = 1\)

Câu 19 :

Có bao nhiêu giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0?

  • A.
    0 giá trị
  • B.
    1 giá trị
  • C.
    2 giá trị
  • D.
    Vô số giá trị

Đáp án : D

Phương pháp giải :

Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

Lời giải chi tiết :

Ta có: \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1 = {\left( {x - a} \right)^2} + 1\)

Vì \({\left( {x - a} \right)^2} \ge 0\) với mọi giá trị của a, x nên \({\left( {x - a} \right)^2} + 1 > 0\) với mọi giá trị của x, a.

Vậy có vô số giá trị của a để giá trị hàm số \(f\left( x \right) = {x^2} - 2ax + {a^2} + 1\) luôn lớn hơn 0.

Câu 20 :

Giầy cỡ 36 ứng với khoảng cách d từ gót chân đến mũi ngón chân là 23cm. Khi khoảng cách d tăng (hay giảm) \(\frac{2}{3}cm\) thì cỡ giầy tăng (hay giảm) 1 số. Ta có bảng:

d(cm) 19 23
Cỡ giầy 33 36

Hãy chọn bảng đúng trong các bảng dưới đây:

  • A.
    d(cm) 19 21 23
    Cỡ giầy 32 33 36
  • B.
    d(cm) 19 22 23
    Cỡ giầy 29 33 36
  • C.
    d(cm) 19 20 23
    Cỡ giầy 31 33 36
  • D.
    d(cm) 19 21 23
    Cỡ giầy 30 33 36

Đáp án : D

Phương pháp giải :

+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.

Lời giải chi tiết :

Với \(d = 19\) ta có: \(23 - 19 = 4 = \frac{2}{3}.6\left( {cm} \right)\), tức là từ \(d = 23\) xuống \(d = 19\) thì khoảng cách d giảm đi \(6.\frac{2}{3}cm\), do đó, cỡ giày giảm đi 6 số. Vậy \(d = 19\) ứng với cỡ giày: \(36 - 6 = 30\)

Với giày cỡ 33 thì từ cỡ giày 36 xuống cỡ giày 33 giảm đi \(3.\frac{2}{3} = 2\left( {cm} \right)\)

Do đó, với cỡ giày thứ 33 thì khoảng cách d là: \(23 - 2 = 21\left( {cm} \right)\)

Vậy ta có bảng đúng là:

d(cm) 19 21 23
Cỡ giầy 30 33 36
Câu 21 :

Cho hàm số \(y = f\left( x \right)\) được xác định bởi tương ứng giữa số que diêm (f(x)) và số hình vuông tạo thành (x) được nêu trong bảng sau:

Tính \(f\left( {12} \right)\)

  • A.
    \(f\left( {12} \right) = 32\)
  • B.
    \(f\left( {12} \right) = 33\)
  • C.
    \(f\left( {12} \right) = 34\)
  • D.
    \(f\left( {12} \right) = 37\)

Đáp án : D

Phương pháp giải :

+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.

Lời giải chi tiết :

Với \(x = 1\) ta có: \(f\left( 1 \right) = 4 = 3.1 + 1\)

Với \(x = 2\) ta có: \(f\left( 2 \right) = 7 = 3.2 + 1\)

Với \(x = 3\) ta có: \(f\left( 3 \right) = 10 = 3.3 + 1\)

Do đó, công thức của hàm số là: \(f\left( x \right) = 3x + 1\)

Vậy \(f\left( {12} \right) = 3.12 + 1 = 37\)

Câu 22 :

Cho hai hàm số: \(f\left( x \right) =  - 6{x^2} + 12x - 7,g\left( x \right) = 3{x^2} + 6x + 4\)

Khẳng định nào sau đây là đúng?

  • A.
    \(f\left( x \right) > 0,g\left( x \right) > 0\) với mọi x
  • B.
    \(f\left( x \right) < 0,g\left( x \right) > 0\) với mọi x
  • C.
    \(f\left( x \right) = 0,g\left( x \right) > 0\) với mọi x
  • D.
    \(f\left( x \right) > 0,g\left( x \right) = 0\) với mọi x

Đáp án : B

Phương pháp giải :

+ Sử dụng giá trị của hàm số: Cho hàm số \(y = f\left( x \right)\), nếu ứng với \(x = a\) ta có: \(y = f\left( a \right)\) thì f(a) được gọi là giá trị của hàm số \(y = f\left( x \right)\) tại \(x = a\).

+ Sử dụng khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được duy nhất một giá trị tương ứng của y thì y được gọi là hàm số của biến số x.

Lời giải chi tiết :

Ta có: \(f\left( x \right) =  - 6{x^2} + 12x - 7 =  - 6{x^2} + 12x - 6 - 1 =  - 6\left( {{x^2} - 2x + 1} \right) - 1 =  - 6{\left( {x - 1} \right)^2} - 1 < 0\) với mọi x.

\(g\left( x \right) = 3{x^2} + 6x + 4 = 3{x^2} + 6x + 3 + 1 = 3\left( {{x^2} + 2x + 1} \right) + 1 = 3{\left( {x + 1} \right)^2} + 1 > 0\) với mọi x.


Cùng chủ đề:

Bài tập trắc nghiệm Toán 8 - Cánh diều có đáp án
Trắc nghiệm toán 8 bài 1 chương 1 cánh diều có đáp án
Trắc nghiệm toán 8 bài 1 chương 2 cánh diều có đáp án
Trắc nghiệm toán 8 bài 1 chương 3 cánh diều có đáp án
Trắc nghiệm toán 8 bài 1 chương 4 cánh diều có đáp án
Trắc nghiệm toán 8 bài 1 chương 5 cánh diều có đáp án
Trắc nghiệm toán 8 bài 1 chương 6 cánh diều có đáp án
Trắc nghiệm toán 8 bài 1 chương 7 cánh diều có đáp án
Trắc nghiệm toán 8 bài 1 chương 8 cánh diều có đáp án