Cho dãy số (\({u_n}\)) xác định bởi \({u_1} = 1,\,\,{u_{n + 1}} = {u_n} + n\). Số hạng \({u_4}\)là:
Viết năm số hạng đầu tiên của mỗi dãy số \(\left( {{u_n}} \right)\) sau:
Chứng minh rằng mỗi dãy số (left( {{u_n}} right)) sau là một cấp số nhân. Hãy tìm số hạng đầu và công bội của nó:
Mỗi dãy số \(\left( {{u_n}} \right)\) sau có phải là một cấp số cộng không? Nếu có, hãy tìm số hạng đầu và công sai của nó:
Hãy chọn dãy số bị chặn trong các dãy số (\({u_n}\)) sau
Xét tính tăng, giảm của mỗi dãy số sau:
Tìm số hạng thứ 10 của cấp số nhân 64; -32; 16; -8;…
Tìm số hạng thứ tám của một cấp số cộng là 75 và số hạng thứ hai mươi là 39.
Hãy chọn dãy số tăng trong các dãy số (\({u_n}\)) sau
Xét tính bị chặn của các dãy số sau:
Cho một cấp số nhân với tất cả các số hạng đều dương. Số hạng thứ 4 của cấp số nhân là 125 và số hạng thứ 10 là \(\frac{{125}}{6}\).
Tổng của 20 số hạng đầu của một cấp số cộng với công sai bằng 3 là 650. Tìm số hạng đầu của cấp số cộng này
Cho dãy số \({u_n} = 2020\sin \frac{{n\pi }}{2} + 2021\cos \frac{{n\pi }}{3}\). Mệnh đề nào dưới đây là đúng?
Để tính xấp xỉ giá trị (sqrt p ,) người ta có thể dùng dãy số cho bởi hệ thức truy hồi sau: ({u_1} = k,{u_n} = frac{1}{2}left( {{u_{n - 1}} + frac{p}{{{u_{n - 1}}}}} right)) với (n ge 2), ở đó k là một giá trị dự đoán ban đầu của (sqrt p .)
Tìm x sao cho \(x,x + 2,x + 3\) là ba số hạng liên tiếp của một cấp số nhân.
Tìm x để \(2x,3x + 2\) và \(5x + 3\) là các số hạng liên tiếp của một cấp số cộng.
Chọn cấp số cộng trong các dãy số (\({u_n}\)) sau
Cho dãy số (left( {{u_n}} right)) xác định bởi hệ thức truy hồi: ({u_1} = 1,{u_{n + 1}} = {u_n} + left( {n + 1} right))
Tính các tổng sau:
Phải lấy tổng của bao nhiêu số hạng đầu của một cấp số cộng có số hạng đầu là 78 và công sai là \( - 4\) để được tổng là 702?