Giải SBT Toán 12 bài 3 trang 16, 17, 18, 29, 20, 21, 22, 23 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo


Bài 1 trang 20 SBT toán 12 - Chân trời sáng tạo

Tính diện tích hình phẳng giới hạn bởi a) Đồ thị của hàm số (y = 3xleft( {2 - x} right)), trục hoành và hai đường thẳng (x = - 1,x = 1). b) Đồ thị của hàm số (y = frac{{4 - x}}{x}), trục hoành và hai đường thẳng (x = 1,x = 2). c) Đồ thị của hàm số (y = {x^3} - {x^2}), trục hoành và hai đường thẳng (x = 0,x = 2).

Bài 2 trang 20 SBT toán 12 - Chân trời sáng tạo

Tính diện tích của hình phẳng được gạch chéo trong mỗi hình sau.

Bài 3 trang 21 SBT toán 12 - Chân trời sáng tạo

Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số a) (y = {x^2} + 2x + 1,y = 1 - 2{rm{x}}) và hai đường thẳng (x = - 1) và (x = 2). b) (y = x - 4{x^3},y = 2x) và hai đường thẳng (x = 1,x = 4).

Bài 4 trang 21 SBT toán 12 - Chân trời sáng tạo

Cho hàm số (y = {x^2} - 2x) có đồ thị (left( C right)). Kí hiệu (A) là hình phẳng giới hạn bởi (left( C right)), trục hoành và hai đường thẳng (x = 0,x = 2); (B) là hình phẳng giới hạn bởi (left( C right)), trục hoành và hai đường thẳng (x = 2,x = aleft( {a > 2} right)). Tìm giá trị của (a) để (A) và (B) có diện tích bằng nhau.

Bài 5 trang 21 SBT toán 12 - Chân trời sáng tạo

Kí hiệu (Sleft( a right)) là diện tích hình phẳng giới hạn bởi đồ thị của hàm số (y = frac{3}{{{x^2}}}), trục hoành và hai đường thẳng (x = 1,x = a) với (a > 1) (Hình 12). Tính giới hạn (mathop {lim }limits_{a to + infty } Sleft( a right)).

Bài 6 trang 21 SBT toán 12 - Chân trời sáng tạo

Một bình chứa nước dạng như Hình 13 có chiều cao là (frac{{3pi }}{2}dm). Nếu lượng nước trong bình có chiều cao là (xleft( {dm} right)) thì mặt nước là hình tròn có bán kính (sqrt {2 - sin x} left( {dm} right)) với (0 le x le frac{{3pi }}{2}). Tính dung tích của bình (kết quả làm tròn đến hàng phần trăm của đềximét khối).

Bài 7 trang 21 SBT toán 12 - Chân trời sáng tạo

Cho (D) là hình phẳng giới hạn bởi đồ thị của hàm số (y = 2{x^3}), trục hoành và hai đường thẳng (x = - 1,x = 1). a) Tính diện tích của (D). b) Tính thể tích của khối tròn xoay tạo thành khi quay (D) quanh trục (Ox).

Bài 8 trang 22 SBT toán 12 - Chân trời sáng tạo

Gọi (D) là hình phẳng giới hạn bởi đồ thị của hai hàm số (y = {x^2}) và (y = sqrt x ) (Hình 14). a) Tính diện tích của (D). b) Tinh thể tích của khối tròn xoay tạo thành khi quay (D) quanh trục (Ox).

Bài 9 trang 22 SBT toán 12 - Chân trời sáng tạo

Mặt cắt ngang của lòng máng dẫn nước là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 15 (phần được tô màu xám). Tính diện tích của mặt cắt ngang đó.

Bài 10 trang 22 SBT toán 12 - Chân trời sáng tạo

Một bể cá có dạng là một phần hình cầu được tạo thành khi cắt hình cầu bán kính 2 dm bằng mặt phẳng cách tâm của hình cầu 1 dm (Hình 16). Tính dung tích của bể cá (kết quả làm tròn đến hàng phần mười của đềximét khối). Gợi ý: Có thể coi bể cá là khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số (y = sqrt {4 - {x^2}} ) với ( - 2 le x le 1), trục hoành và đường thẳng (x = 1) quanh trục hoành.


Cùng chủ đề:

Giải SBT Toán 12 bài 2 trang 13, 14, 15, 16, 17, 18, 19 - Chân trời sáng tạo
Giải SBT Toán 12 bài 2 trang 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 - Chân trời sáng tạo
Giải SBT Toán 12 bài 2 trang 65, 66, 67, 68, 69, 70, 71, 72 - Chân trời sáng tạo
Giải SBT Toán 12 bài 2 trang 81, 82, 83, 84, 85 - Chân trời sáng tạo
Giải SBT Toán 12 bài 2 trang 98, 99, 100, 101, 102, 103, 104, 105, 106 - Chân trời sáng tạo
Giải SBT Toán 12 bài 3 trang 16, 17, 18, 29, 20, 21, 22, 23 - Chân trời sáng tạo
Giải SBT Toán 12 bài 3 trang 19, 20, 21, 22, 23 - Chân trời sáng tạo
Giải SBT Toán 12 bài 3 trang 56, 57, 58, 59, 60, 61 - Chân trời sáng tạo
Giải SBT Toán 12 bài 3 trang 72, 73, 74, 75, 76, 77 - Chân trời sáng tạo
Giải SBT Toán 12 bài 4 trang 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 - Chân trời sáng tạo
Giải SBT Toán 12 bài tập cuối chương 1 trang 33, 34, 35, 36, 37, 38 - Chân trời sáng tạo