Trắc nghiệm toán 8 bài 2 kết nối tri thức có đáp án — Không quảng cáo

Bài tập trắc nghiệm Toán 8 - Kết nối tri thức có đáp án Bài tập trắc nghiệm Chương 1 Đa thức


Trắc nghiệm Bài 2: Đa thức Toán 8 Kết nối tri thức

Đề bài

Câu 1 :

Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.

  • A.
    \(P(x) = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
  • B.
    \(P(x) = 5{{{x}}^2} + 2{{{x}}^3} + {x^4} - 7\)
  • C.
    \(P(x) =  - 7 - 5{{{x}}^2} + 2{{{x}}^3} + {x^4}\)
  • D.

    \(P(x) =  - 7 - 5{{{x}}^2} + 2{{{x}}^3} - {x^4}\)

Câu 2 :

Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:

  • A.
    4.
  • B.
    5.
  • C.
    6.
  • D.
    7.
Câu 3 :

Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):

  • A.
    5; 3; 1.
  • B.
    8; 2; -7.
  • C.
    13; 4; -6; 1.
  • D.
    8; 2; -7; 1.
Câu 4 :

Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) =  - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:

  • A.

    -1 và 2

  • B.

    -1 và 0

  • C.
    1 và 0
  • D.

    2 và 0

Câu 5 :

Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:

  • A.
    8
  • B.
    -8
  • C.
    -13
  • D.
    10
Câu 6 :

Thu gọn đa thức \(M =  - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:

  • A.
    \(M = 6{{{x}}^2}y - 12{{x}}{y^2}\)
  • B.
    \(M = 12{{x}}{y^2}\)
  • C.
    \(M =  - 2{{x}}{y^2}\)
  • D.
    \(M =  - 6{{{x}}^2}y - 2{{x}}{y^2}\)
Câu 7 :

Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)

  • A.
    \(7{{{x}}^2} - 6{{x}} + 16\)
  • B.
    \(3{{{x}}^2} + 2\)
  • C.
    \(3{{{x}}^2} + 6{{x}} + 16\)
  • D.
    \(7{{{x}}^2} + 2\)
Câu 8 :

Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:

  • A.
    \(Q = 3{{{x}}^4}\)
  • B.
    \(Q = 3{{{x}}^4} - 4\)
  • C.
    \(Q =  - 3{{{x}}^4} - 4\)
  • D.
    \(Q = 2{{{x}}^4} + 4\)
Câu 9 :

\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:

  • A.
    10
  • B.
    1
  • C.
    -1
  • D.
    11
Câu 10 :

Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008

  • A.
    \({20092008^4}\)
  • B.
    \({20082009^4}\)
  • C.
    -5
  • D.
    5
Câu 11 :

Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)

  • A.
    \(P = {x^2} - 12{{x}}y\)
  • B.
    \(P = {x^2} + 10{y^2}\)
  • C.
    \(P =  - {x^2} - 12{{x}}y + 10{y^2}\)
  • D.
    \(P = 12{{x}}y + 10{y^2}\)
Câu 12 :

Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)

  • A.
    0
  • B.
    1
  • C.
    -1
  • D.
    0 và 1
Câu 13 :

Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:

  • A.
    2
  • B.
    1
  • C.
    3
  • D.
    0
Câu 14 :

Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:

  • A.
    Q = 0
  • B.
    Q > 0
  • C.
    Q < 0
  • D.
    Không xác định được
Câu 15 :

: Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại

x = y = -2.

  • A.
    64a + 8b + 4c
  • B.
    -64a – 8b – 4c
  • C.
    64a – 8b + 8c
  • D.
    64a – 8b + 4c
Câu 16 :

Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.

  • A.
    a = 2
  • B.
    a = 0
  • C.
    a = -2
  • D.
    a = 1
Câu 17 :

Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)

  • A.
    6
  • B.
    8
  • C.
    12
  • D.
    0

Lời giải và đáp án

Câu 1 :

Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.

  • A.
    \(P(x) = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
  • B.
    \(P(x) = 5{{{x}}^2} + 2{{{x}}^3} + {x^4} - 7\)
  • C.
    \(P(x) =  - 7 - 5{{{x}}^2} + 2{{{x}}^3} + {x^4}\)
  • D.

    \(P(x) =  - 7 - 5{{{x}}^2} + 2{{{x}}^3} - {x^4}\)

Đáp án : A

Phương pháp giải :
Sắp xếp các số mũ của biến theo lũy thừa giảm dần
Lời giải chi tiết :
Ta có: \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7 = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
Câu 2 :

Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:

  • A.
    4.
  • B.
    5.
  • C.
    6.
  • D.
    7.

Đáp án : D

Phương pháp giải :
Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.
Lời giải chi tiết :
Ta có:

\({x^2}{y^5}\) có bậc là 7.

\({x^2}{y^4}\) có bậc là 6

\({y^6}\) có bậc là 6

1 có bậc là 0

Vậy đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) có bậc là 7

Câu 3 :

Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):

  • A.
    5; 3; 1.
  • B.
    8; 2; -7.
  • C.
    13; 4; -6; 1.
  • D.
    8; 2; -7; 1.

Đáp án : D

Phương pháp giải :
Các số gắn với biến khác 0 là các hệ số.
Lời giải chi tiết :
Đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\) có các hệ số khác 0 là 8; 2; -7; 1.
Câu 4 :

Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) =  - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:

  • A.

    -1 và 2

  • B.

    -1 và 0

  • C.
    1 và 0
  • D.

    2 và 0

Đáp án : C

Phương pháp giải :

Thu gọn đa thức rồi xác định hệ số cao nhất và hệ số tự do.

Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất .

Lời giải chi tiết :

Ta có: \(P(x) =  - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3} =  {x^4} - 2{{{x}}^3} + 2{{{x}}^2}\) có hệ số cao nhất là 1 và hệ số tự do là 0

Câu 5 :

Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:

  • A.
    8
  • B.
    -8
  • C.
    -13
  • D.
    10

Đáp án : B

Phương pháp giải :
Thu gọn đa thức rồi thay giá trị x = -1; y = 1vào đa thức đã thu gọn.
Lời giải chi tiết :

Ta có: \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2} = 8{{{x}}^3}{y^2}\)

Thay x = -1; y = 1 vào biểu thức \(8{{{x}}^3}{y^2}\) ta có: \(-8.{\left( { - 1} \right)^3}{.1^2} =  - 8\)

Câu 6 :

Thu gọn đa thức \(M =  - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:

  • A.
    \(M = 6{{{x}}^2}y - 12{{x}}{y^2}\)
  • B.
    \(M = 12{{x}}{y^2}\)
  • C.
    \(M =  - 2{{x}}{y^2}\)
  • D.
    \(M =  - 6{{{x}}^2}y - 2{{x}}{y^2}\)

Đáp án : C

Phương pháp giải :

Nhóm các đơn thức đồng dạng với nhau

Lời giải chi tiết :

Ta có:

\(M =  - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2} = \left( { - 3{{{x}}^2}y + 3{{{x}}^2}y} \right) + \left( { - 7{{x}}{y^2} + 5{{x}}{y^2}} \right) =  - 2{{x}}{y^2}\)

Câu 7 :

Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)

  • A.
    \(7{{{x}}^2} - 6{{x}} + 16\)
  • B.
    \(3{{{x}}^2} + 2\)
  • C.
    \(3{{{x}}^2} + 6{{x}} + 16\)
  • D.
    \(7{{{x}}^2} + 2\)

Đáp án : B

Phương pháp giải :
Áp dụng quy tắc bỏ dấu ngoặc rồi thực hiện tính
Lời giải chi tiết :

\(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right) \)

\(= 5{{{x}}^2} - 3{{x}} + 9 - 2{{{x}}^2} + 3{{x}} - 7 \)

\(= \left(5{{{x}}^2} - 2{{{x}}^2} \right) + \left(- 3{{x}}   + 3{{x}} \right) + (9 - 7)\)

\(= 3{{{x}}^2} + 2\)

Câu 8 :

Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:

  • A.
    \(Q = 3{{{x}}^4}\)
  • B.
    \(Q = 3{{{x}}^4} - 4\)
  • C.
    \(Q =  - 3{{{x}}^4} - 4\)
  • D.
    \(Q = 2{{{x}}^4} + 4\)

Đáp án : D

Phương pháp giải :

Thay \(y = x{;^{}}z = {x^2}\) vào đa thức Q rồi tính

Công thức lũy thừa \({\left( {{x^n}} \right)^m} = {x^{n.m}}\)

Lời giải chi tiết :
Thay \(y = x{;^{}}z = {x^2}\) vào đa thức Q ta được:

\(Q = 3{{{x}}^4} + 2{{{x}}^4} - 3{\left( {{x^2}} \right)^2} + 4 = 3{{{x}}^4} + 2{{{x}}^4} - 3{{{x}}^4} + 4 = 2{{{x}}^4} + 4\)

Câu 9 :

\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:

  • A.
    10
  • B.
    1
  • C.
    -1
  • D.
    11

Đáp án : C

Phương pháp giải :

Ta tìm các giá trị của x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) sau đó thay vào biểu thức.

Lời giải chi tiết :

Vì \(2{{{x}}^2} + 7 > 0\) với mọi x nên ta có:

\(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) khi \( x + 2 = 0 \), do đó \(x =  - 2\)

Thay x = -2 vào biểu thức \({x^3} - 3{{x}} + 1\) ta được:

\({\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 =  - 1\)

Câu 10 :

Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008

  • A.
    \({20092008^4}\)
  • B.
    \({20082009^4}\)
  • C.
    -5
  • D.
    5

Đáp án : D

Phương pháp giải :
Rút gọn biểu thức rồi thay giá trị x = 1-; y = 20092008 vào biểu thức
Lời giải chi tiết :
Ta có: \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5} =  - 5{{{x}}^3}\)

Thay giá trị x = -1; y = 20092008 vào biểu thức \( - 5{{{x}}^3}\) ta được:

\( - 5.{\left( { - 1} \right)^3} = 5\)

Câu 11 :

Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)

  • A.
    \(P = {x^2} - 12{{x}}y\)
  • B.
    \(P = {x^2} + 10{y^2}\)
  • C.
    \(P =  - {x^2} - 12{{x}}y + 10{y^2}\)
  • D.
    \(P = 12{{x}}y + 10{y^2}\)

Đáp án : A

Phương pháp giải :
Áp dụng quy tắc chuyển vế để tìm đa thức P.
Lời giải chi tiết :
Ta có:

\(\begin{array}{l}P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\\P = 3{{{x}}^2} - 6{{x}}y - 5{y^2} - 2{{{x}}^2} - 6{{x}}y + 5{y^2}\\P = {x^2} - 12{{x}}y\end{array}\)

Câu 12 :

Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)

  • A.
    0
  • B.
    1
  • C.
    -1
  • D.
    0 và 1

Đáp án : A

Phương pháp giải :
Rút gọn đa thức Q rồi cho đa thức Q = 0 từ đó tìm các giá trị của x.
Lời giải chi tiết :

Ta có:

\(\begin{array}{l}Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\\Q = 8{{{x}}^{n + 2}} + 8{{{x}}^n} = 8{{{x}}^n}\left( {{x^2} + 1} \right)\end{array}\)

Vì \({x^2} + 1 > 0\) với mọi x nên \(Q = 0 \) khi \(8{{{x}}^n}\left( {{x^2} + 1} \right) = 0 \) hay \(x = 0\)

Vậy x = 0 thì Q = 0

Câu 13 :

Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:

  • A.
    2
  • B.
    1
  • C.
    3
  • D.
    0

Đáp án : D

Phương pháp giải :
Rút gọn đa thức rồi tìm bậc của đa thức rút gọn
Lời giải chi tiết :

Ta có:

\(\begin{array}{l}\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\\ = {x^2} + {y^2} - 2{{x}}y - {x^2} - {y^2} - 2{{x}}y + 4{{x}}y - 1\\ = \left( {{x^2} - {x^2}} \right) + \left( {{y^2} - {y^2}} \right) + \left( { - 4{{x}}y + 4{{x}}y} \right) - 1 =  - 1\end{array}\)

Bậc của -1 là 0

Câu 14 :

Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:

  • A.
    Q = 0
  • B.
    Q > 0
  • C.
    Q < 0
  • D.
    Không xác định được

Đáp án : B

Phương pháp giải :
Xác định dấu của từng hạng tử trong đa thức.
Lời giải chi tiết :
Vì x < 0, y > 0 nên:

\(\begin{array}{l}{x^2}{y^3} > 0\\2{{{x}}^2} > 0\\4 > 0\end{array}\)

Suy ra \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4 > 0\)

Câu 15 :

: Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại

x = y = -2.

  • A.
    64a + 8b + 4c
  • B.
    -64a – 8b – 4c
  • C.
    64a – 8b + 8c
  • D.
    64a – 8b + 4c

Đáp án : D

Phương pháp giải :
Thay các giá trị x = y = -2 vào biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\)
Lời giải chi tiết :
Thay các giá trị x = y = -2 vào biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) ta được:

\(\begin{array}{l}A = a.{\left( { - 2} \right)^3}.{\left( { - 2} \right)^3} + b.{\left( { - 2} \right)^2}.\left( { - 2} \right) + c.\left( { - 2} \right).\left( { - 2} \right)\\A = a.\left( { - 8} \right).\left( { - 8} \right) + b.4.\left( { - 2} \right) + c.4\\A = 64{{a}} - 8b + 4c\end{array}\)

Câu 16 :

Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.

  • A.
    a = 2
  • B.
    a = 0
  • C.
    a = -2
  • D.
    a = 1

Đáp án : C

Phương pháp giải :
Rút gọn đa thức rồi cho các hệ số của đơn thức có bậc lớn hơn 4 bằng 0.
Lời giải chi tiết :

Ta có:

\(\begin{array}{l}4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\\ = \left( {4{{{x}}^5}{y^2} + 2{{a}}{{{x}}^5}{y^2}} \right) + \left( { - 5{{{x}}^3}y + 7{{{x}}^3}y} \right)\\ = \left( {4 + 2{{a}}} \right){x^5}{y^2} + 2{{{x}}^3}y\end{array}\)

Để bậc của đa thức đã cho bằng 4 thì hệ số của \({x^5}{y^2}\) phải bằng 0 (vì nếu hệ số của \({x^5}{y^2}\) khác 0 thì đa thức có bậc là 5 + 2 = 7.

Do đó \(4 + 2{{a}} = 0 \) suy ra \( a =  - 2\)

Câu 17 :

Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)

  • A.
    6
  • B.
    8
  • C.
    12
  • D.
    0

Đáp án : C

Phương pháp giải :
Biến đổi đa thức Q để có \({x^2} + {y^2}\)
Lời giải chi tiết :
Ta có:

\(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2} = (3{{{x}}^4} + 3{{{x}}^2}{y^2}) + (2{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}) = 3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right)\)

Mà \({x^2} + {y^2} = 2\) nên ta có: \(3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right) = 6{{{x}}^2} + 6{y^2} = 6\left( {{x^2} + {y^2}} \right) = 6.2 = 12\)


Cùng chủ đề:

Bài tập trắc nghiệm Toán 8 - Kết nối tri thức có đáp án
Trắc nghiệm toán 8 bài 1 kết nối tri thức có đáp án
Trắc nghiệm toán 8 bài 2 kết nối tri thức có đáp án
Trắc nghiệm toán 8 bài 3 kết nối tri thức có đáp án
Trắc nghiệm toán 8 bài 4 kết nối tri thức có đáp án
Trắc nghiệm toán 8 bài 5 kết nối tri thức có đáp án
Trắc nghiệm toán 8 bài 6 kết nối tri thức có đáp án
Trắc nghiệm toán 8 bài 7 kết nối tri thức có đáp án