Trắc nghiệm Bài 22: Tính chất cơ bản của phân thức đại số Toán 8 Kết nối tri thức
Đề bài
Chọn câu sai . Với đa thức\(B \ne 0\) ta có:
-
A.
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (với \(M\) khác đa thức 0)
-
B.
\(\frac{A}{B} = \frac{{A:N}}{{B:N}}\) (với \(N\) là một nhân tử chung, \(N\) khác đa thức 0)
-
C.
\(\frac{A}{B} = \frac{{ - A}}{{ - B}}\)
-
D.
\(\frac{A}{B} = \frac{{A + M}}{{B + M}}\)
Phân thức \(\frac{{{x^2} - 7x + 12}}{{{x^2} - 6x + 9}}\) (với \(x \ne 3\)) bằng với phân thức nào sau đây?
-
A.
\(\frac{{x - 4}}{{x + 3}}\)
-
B.
\(\frac{{x + 4}}{{x + 3}}\)
-
C.
\(\frac{{x - 4}}{{x - 3}}\)
-
D.
\(\frac{{x + 4}}{{x - 3}}\)
Mẫu thức chung của các phân thức \(\frac{5}{{2\left( {x - 3} \right)}},\,\frac{7}{{{{\left( {x - 3} \right)}^3}}}\)là?
-
A.
\({\left( {x - 3} \right)^3}\)
-
B.
\(x - 3\)
-
C.
\(2{\left( {x - 3} \right)^4}\)
-
D.
\(2{\left( {x - 3} \right)^3}\)
Quy đồng mẫu thức các phân thức \(\frac{1}{x},\,\frac{2}{y},\,\frac{3}{z}\) ta được:
-
A.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{{3xy}}{{xyz}}\)
-
B.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{{3y}}{{xyz}}\)
-
C.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2z}}{{xyz}},\,\frac{3}{z} = \frac{{3xy}}{{xyz}}\)
-
D.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{3}{{xyz}}\)
Cho \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\). Khi đó:
-
A.
\(A = \frac{{x - 2}}{2}\)
-
B.
\(A = \frac{{x - 2}}{{2x + 6}}\)
-
C.
\(A = \frac{{x - 2}}{{x + 3}}\)
-
D.
\(A = \frac{{x - 2}}{{2x}}\)
Đa thức nào sau đây là mẫu thức chung của các phân thức \(\frac{1}{{2 - x}},\,\frac{{2x + 1}}{{{{\left( {x - 2} \right)}^2}}},\,\frac{{3{x^2} - 1}}{{{x^2} + 4x + 4}}\)
-
A.
\(\left( {x - 2} \right){\left( {x + 2} \right)^2}\)
-
B.
\(\left( {2 - x} \right){\left( {x - 2} \right)^2}{\left( {x + 2} \right)^2}\)
-
C.
\({\left( {x - 2} \right)^2}{\left( {x + 2} \right)^2}\)
-
D.
\({\left( {x - 2} \right)^2}\)
Quy đồng mẫu thức các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) ta được các phân thức lần lượt là:
-
A.
\(\frac{1}{{{x^3} + 1}};\,\frac{{{x^2} - x + 1}}{{3\left( {{x^3} + 1} \right)}};\,\frac{{{x^2} + x}}{{2\left( {{x^3} + 1} \right)}}\)
-
B.
\(\frac{1}{{6\left( {{x^3} + 1} \right)}};\,\frac{{{x^2} - x + 1}}{{3\left( {{x^3} + 1} \right)}};\,\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
-
C.
\(\frac{6}{{6\left( {{x^3} + 1} \right)}};\,\frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\,\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
-
D.
\(\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}};\,\frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\,\frac{6}{{6\left( {{x^3} + 1} \right)}}\)
Tìm \(x\) biết \({a^2}x + 2ax + 4 = {a^2}\) với \(a \ne 0;\,a \ne - 2\).
-
A.
\(x = \frac{{a + 2}}{a}\)
-
B.
\(x = \frac{{a - 2}}{a}\)
-
C.
\(x = \frac{a}{{a - 2}}\)
-
D.
\(x = \frac{a}{{a + 2}}\)
Tính giá trị phân thức \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\) tại \(x = 1\).
-
A.
\(A = 2\)
-
B.
\(A = 1\)
-
C.
\(A = \frac{1}{2}\)
-
D.
\(A = - \frac{1}{2}\)
Cho \(A = \frac{{2{a^2} + 8ab + 8{b^2}}}{{a + 2b}}\) và \(a + 2b = 5\). Khi đó:
-
A.
\(A = 0\)
-
B.
\(A = 5\)
-
C.
\(A = 1\)
-
D.
\(A = 10\)
Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{5}{{3x + 2}}\) có giá trị là một số nguyên?
-
A.
0.
-
B.
1.
-
C.
2.
-
D.
3.
Cho các phân thức \(\frac{{2x}}{{3 - 3x}};\,\frac{{5x - 4}}{{4x + 4}};\,\frac{{{x^2} + x + 1}}{{2\left( {{x^2} - 1} \right)}}\)
An nói rằng mẫu thức chung của các phân thức trên là \(2\left( {{x^2} - 1} \right)\)
Bình nói rằng mẫu thức chung của các phân thức trên là \(12\left( {x - 1} \right)\left( {x + 1} \right)\)
Chọn câu đúng?
-
A.
Bạn An đúng, bạn Bình sai.
-
B.
Bạn An sai, bạn Bình đúng.
-
C.
Hai bạn đều đúng.
-
D.
Hai bạn đều sai.
Rút gọn phân thức \(A = \frac{{4|x - 3| - 2|x - 5|}}{{9{x^2} - 66x + 121}}\) biết \(3 < x < 5\)
-
A.
\(\frac{2}{{3x - 11}}\)
-
B.
\(\frac{4}{{3x - 11}}\)
-
C.
\(\frac{{2\left( {x + 1} \right)}}{{{{\left( {3x - 11} \right)}^2}}}\)
-
D.
\(\frac{{2\left( {x + 1} \right)}}{{{{\left( {3x + 11} \right)}^2}}}\)
Tìm giá trị lớn nhất của phân thức \(A = \frac{5}{{{x^2} - 6x + 10}}\)
-
A.
5
-
B.
\(\frac{1}{5}\)
-
C.
9
-
D.
1
Giá trị của biểu thức \(A = \frac{{\left( {2{x^2} + 2x} \right){{\left( {x - 2} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}}\) với \(x = \frac{1}{2}\) là
-
A.
\(A = \frac{{10}}{2}\)
-
B.
\(A = - \frac{6}{5}\)
-
C.
\(A = \frac{6}{5}\)
-
D.
\(A = \frac{{25}}{2}\)
Với giá trị nào của \(x\) thì \(A = \frac{{{x^2} + 2x + 4}}{{{x^2} + 4x + 4}}\) đạt giá trị nhỏ nhất?
-
A.
1
-
B.
2
-
C.
0
-
D.
-2
Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên?
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Tính giá trị của biểu thức \(A = \frac{{\left( {{x^2} - 4{y^2}} \right)\left( {x - 2y} \right)}}{{{x^2} - 4xy + 4{y^2}}}\) tại \(x = 98\) và \(y = 1\)
-
A.
99
-
B.
100
-
C.
199
-
D.
96
Để có các phân thức có cùng mẫu, ta cần điền vào các chỗ trống \(\frac{{x + 3}}{{{x^2} + 8x + 15}} = \frac{{x - 3}}{{...}};\,\frac{{5x - 15}}{{{x^2} - 6x + 9}} = \frac{{...}}{{\left( {x - 3} \right)\left( {x + 5} \right)}}\). Các đa thức lần lượt là:
-
A.
\(x - 3;\,5x + 10\)
-
B.
\({\left( {x - 3} \right)^2}\left( {x + 5} \right);\,5x - 25\)
-
C.
\(\left( {x - 3} \right)\left( {x + 5} \right);\,5x + 25\)
-
D.
\(\left( {x - 3} \right)\left( {x + 5} \right);\,x + 5\)
Cho \(a > b > 0\). Chọn câu đúng?
-
A.
\(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} = \frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\)
-
B.
\(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} > 2\frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\)
-
C.
\(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} > \frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\)
-
D.
\(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} < \frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\)
Với điều kiện nào thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau?
-
A.
\(x = 2\)
-
B.
\(x \ne 1\)
-
C.
\(x = - 2\)
-
D.
\(x = - 1\)
Cho \(A = \frac{{{x^4} - {x^3} - x + 1}}{{{x^4} + {x^3} + 3{x^2} + 2x + 2}}\). Kết luận nào sau đây đúng?
-
A.
\(A\) luôn nhận giá trị không âm với mọi \(x\)
-
B.
\(A\) luôn nhận giá trị dương với mọi \(x\)
-
C.
Giá trị của \(A\) không phụ thuộc vào \(x\)
-
D.
\(A\) luôn nhận giá trị âm với mọi \(x\)
Cho \(abc \ne 0;\,a + b = c\). Tính giá trị của phân thức \(A = \frac{{\left( {{a^2} + {b^2} - {c^2}} \right)\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{c^2} + {a^2} - {b^2}} \right)}}{{8{a^2}{b^2}{c^2}}}\)
-
A.
-1
-
B.
1
-
C.
2
-
D.
-2
Cho \(a,\,b,\,c,\,d\) thỏa mãn \(a + b + c + d = 0;\,ab + ac + bc = 1\). Rút gọn biểu thức \(A = \frac{{3\left( {ab - c{\rm{d}}} \right)\left( {bc - ad} \right)\left( {ca - bd} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}}\).
-
A.
-1
-
B.
1
-
C.
3
-
D.
-3
Tính giá trị của phân thức \(A = \frac{{{a^3} - {b^3} + {c^3} + 3abc}}{{{{\left( {a + b} \right)}^2} + {{\left( {b + c} \right)}^2} + {{\left( {c - a} \right)}^2}}}\) biết \(a + c - b = 10\).
-
A.
0
-
B.
1
-
C.
4
-
D.
5
Biểu thức \(A = \frac{{{x^2} + 5x + 5}}{{{x^2} + 4x + 4}}\) có giá trị lớn nhất là:
-
A.
\(\frac{5}{4}\)
-
B.
1
-
C.
\(\frac{4}{5}\)
-
D.
2
Lời giải và đáp án
Chọn câu sai . Với đa thức\(B \ne 0\) ta có:
-
A.
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (với \(M\) khác đa thức 0)
-
B.
\(\frac{A}{B} = \frac{{A:N}}{{B:N}}\) (với \(N\) là một nhân tử chung, \(N\) khác đa thức 0)
-
C.
\(\frac{A}{B} = \frac{{ - A}}{{ - B}}\)
-
D.
\(\frac{A}{B} = \frac{{A + M}}{{B + M}}\)
Đáp án : D
Dựa vào tính chất cơ bản của phân thức đại số:
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức 0 thì được một phân thức bằng phân thức đã cho:
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (\(M\) là một đa thức khác đa thức 0)
- Nếu tử và mẫu của một phân thức có nhân tử chung thì khi chia cả tử và mẫu cho nhân tử chung đó ta được một phân thức bằng phân thức đã cho:
\(\frac{{A:N}}{{B:N}} = \frac{A}{B}\) (\(N\) là một nhân tử chung)
Theo tính chất cơ bản của phân thức đại số, ta có:
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (với \(M\) khác đa thức 0) \( \Rightarrow \frac{A}{B} = \frac{{A\left( { - 1} \right)}}{{B\left( { - 1} \right)}} = \frac{{ - A}}{{ - B}}\)
\(\frac{A}{B} = \frac{{A:N}}{{B:N}}\) (với \(N\) là một nhân tử chung, \(N\) khác đa thức 0)
Mệnh đề \(\frac{A}{B} = \frac{{A + M}}{{B + M}}\) sai. Ví dụ: \(\frac{2}{3} \ne \frac{3}{4} = \frac{{2 + 1}}{{3 + 1}}\)
Phân thức \(\frac{{{x^2} - 7x + 12}}{{{x^2} - 6x + 9}}\) (với \(x \ne 3\)) bằng với phân thức nào sau đây?
-
A.
\(\frac{{x - 4}}{{x + 3}}\)
-
B.
\(\frac{{x + 4}}{{x + 3}}\)
-
C.
\(\frac{{x - 4}}{{x - 3}}\)
-
D.
\(\frac{{x + 4}}{{x - 3}}\)
Đáp án : C
Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
\(\frac{{{x^2} - 7x + 12}}{{{x^2} - 6x + 9}} = \frac{{{x^2} - 4x - 3x + 12}}{{{{\left( {x - 3} \right)}^2}}} = \frac{{x\left( {x - 4} \right) - 3\left( {x - 4} \right)}}{{{{\left( {x - 3} \right)}^2}}} = \frac{{\left( {x - 4} \right)\left( {x - 3} \right)}}{{{{\left( {x - 3} \right)}^2}}} = \frac{{x - 4}}{{x - 3}}\)
Mẫu thức chung của các phân thức \(\frac{5}{{2\left( {x - 3} \right)}},\,\frac{7}{{{{\left( {x - 3} \right)}^3}}}\)là?
-
A.
\({\left( {x - 3} \right)^3}\)
-
B.
\(x - 3\)
-
C.
\(2{\left( {x - 3} \right)^4}\)
-
D.
\(2{\left( {x - 3} \right)^3}\)
Đáp án : D
Chọn mẫu thức chung (MTC) của hai mẫu thức bằng cách lấy tích của các nhân tử được chọn như sau:
- Nhân tử bằng số của MTC là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã cho (nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số ở MTC là BCNN của chúng);
- Với mỗi lũy thừa của cùng một biểu thức có mặt trong các mẫu thức, ta chọn lũy thừa với số mũ cao nhất.
Mẫu thức của hai phân thức \(\frac{5}{{2\left( {x - 3} \right)}},\,\frac{7}{{{{\left( {x - 3} \right)}^3}}}\) là \(2\left( {x - 3} \right)\) và \({\left( {x - 3} \right)^3}\) nên mẫu thức chung có phần hệ số là 2, phần biến số là \({\left( {x - 3} \right)^3}\).
\( \Rightarrow \)Mẫu thức chung là \(2{\left( {x - 3} \right)^3}\)
Quy đồng mẫu thức các phân thức \(\frac{1}{x},\,\frac{2}{y},\,\frac{3}{z}\) ta được:
-
A.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{{3xy}}{{xyz}}\)
-
B.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{{3y}}{{xyz}}\)
-
C.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2z}}{{xyz}},\,\frac{3}{z} = \frac{{3xy}}{{xyz}}\)
-
D.
\(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{3}{{xyz}}\)
Đáp án : A
Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm các mẫu thức chung;
- Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó;
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Mẫu chung của các phân thức là \(xyz\)
Nhân tử phụ của \(\frac{1}{x}\) là \(yz\)\( \Rightarrow \frac{1}{x} = \frac{{yz}}{{xyz}}\)
Nhân tử phụ của \(\frac{2}{y}\) là \(x{\rm{z}}\)\( \Rightarrow \frac{2}{y} = \frac{{2{\rm{xz}}}}{{xyz}}\)
Nhân tử phụ của \(\frac{3}{z}\) là \(xy\)\( \Rightarrow \frac{3}{z} = \frac{{3{\rm{x}}y}}{{xyz}}\)
Vậy quy đồng mẫu số các phân thức \(\frac{1}{x},\,\frac{2}{y},\,\frac{3}{z}\) ta được \(\frac{1}{x} = \frac{{yz}}{{xyz}},\,\frac{2}{y} = \frac{{2xz}}{{xyz}},\,\frac{3}{z} = \frac{{3xy}}{{xyz}}\)
Cho \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\). Khi đó:
-
A.
\(A = \frac{{x - 2}}{2}\)
-
B.
\(A = \frac{{x - 2}}{{2x + 6}}\)
-
C.
\(A = \frac{{x - 2}}{{x + 3}}\)
-
D.
\(A = \frac{{x - 2}}{{2x}}\)
Đáp án : D
Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
\(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}} = \frac{{{x^2} + 3x - 2x - 6}}{{2\left( {{x^2} + 3x} \right)}} = \frac{{x\left( {x + 3} \right) - 2\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{\left( {x - 2} \right)\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{x - 2}}{{2x}}\)
Đa thức nào sau đây là mẫu thức chung của các phân thức \(\frac{1}{{2 - x}},\,\frac{{2x + 1}}{{{{\left( {x - 2} \right)}^2}}},\,\frac{{3{x^2} - 1}}{{{x^2} + 4x + 4}}\)
-
A.
\(\left( {x - 2} \right){\left( {x + 2} \right)^2}\)
-
B.
\(\left( {2 - x} \right){\left( {x - 2} \right)^2}{\left( {x + 2} \right)^2}\)
-
C.
\({\left( {x - 2} \right)^2}{\left( {x + 2} \right)^2}\)
-
D.
\({\left( {x - 2} \right)^2}\)
Đáp án : C
Chọn mẫu thức chung (MTC) của hai mẫu thức bằng cách lấy tích của các nhân tử được chọn như sau:
- Nhân tử bằng số của MTC là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã cho (nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số ở MTC là BCNN của chúng);
- Với mỗi lũy thừa của cùng một biểu thức có mặt trong các mẫu thức, ta chọn lũy thừa với số mũ cao nhất.
Ta có các phân thức \(\frac{1}{{2 - x}},\,\frac{{2x + 1}}{{{{\left( {x - 2} \right)}^2}}},\,\frac{{3{x^2} - 1}}{{{x^2} + 4x + 4}}\) có mẫu thức lần lượt là: \(2 - x,\,{\left( {x - 2} \right)^2}\) và \({x^2} + 4x + 4 = {\left( {x + 2} \right)^2}\) nên mẫu thức chung là \({\left( {x - 2} \right)^2}{\left( {x + 2} \right)^2}\)
Quy đồng mẫu thức các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) ta được các phân thức lần lượt là:
-
A.
\(\frac{1}{{{x^3} + 1}};\,\frac{{{x^2} - x + 1}}{{3\left( {{x^3} + 1} \right)}};\,\frac{{{x^2} + x}}{{2\left( {{x^3} + 1} \right)}}\)
-
B.
\(\frac{1}{{6\left( {{x^3} + 1} \right)}};\,\frac{{{x^2} - x + 1}}{{3\left( {{x^3} + 1} \right)}};\,\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
-
C.
\(\frac{6}{{6\left( {{x^3} + 1} \right)}};\,\frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\,\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
-
D.
\(\frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}};\,\frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}};\,\frac{6}{{6\left( {{x^3} + 1} \right)}}\)
Đáp án : C
Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm các mẫu thức chung;
- Tìm nhân tử phụ của mỗi mẫu thức bằng cách chia MTC cho mẫu thức đó;
- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Ta có: \({x^3} + 1 = \left( {x + 1} \right)\left( {{x^2} - x + 1} \right);\,3x + 3 = 3\left( {x + 1} \right);\,2{x^2} - 2x + 2 = 2\left( {{x^2} - x + 1} \right)\) và \(BCNN\left( {2;3} \right) = 6\) nên mẫu thức chung của các phân thức \(\frac{1}{{{x^3} + 1}},\,\frac{2}{{3x + 3}},\,\frac{x}{{2{x^2} - 2x + 2}}\) là \(6\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = 6\left( {{x^3} + 1} \right)\).
Nhân tử phụ của \(\frac{1}{{{x^3} + 1}}\) là \(6\). \( \Rightarrow \frac{1}{{{x^3} + 1}} = \frac{6}{{6\left( {{x^3} + 1} \right)}}\)
Nhân tử phụ của \(\frac{2}{{3x + 3}}\) là \(2\left( {{x^2} - x + 1} \right)\). \( \Rightarrow \frac{2}{{3x + 3}} = \frac{{2.2\left( {{x^2} - x + 1} \right)}}{{3\left( {x + 1} \right)2\left( {{x^2} - x + 1} \right)}} = \frac{{4{x^2} - 4x + 4}}{{6\left( {{x^3} + 1} \right)}}\)
Nhân tử phụ của \(\frac{x}{{2{x^2} - 2x + 2}}\) là \(3\left( {x + 1} \right)\). \( \Rightarrow \frac{x}{{2{x^2} - 2x + 2}} = \frac{{x.3\left( {x + 1} \right)}}{{2\left( {{x^2} - x + 1} \right)3\left( {x + 1} \right)}} = \frac{{3{x^2} + 3x}}{{6\left( {{x^3} + 1} \right)}}\)
Tìm \(x\) biết \({a^2}x + 2ax + 4 = {a^2}\) với \(a \ne 0;\,a \ne - 2\).
-
A.
\(x = \frac{{a + 2}}{a}\)
-
B.
\(x = \frac{{a - 2}}{a}\)
-
C.
\(x = \frac{a}{{a - 2}}\)
-
D.
\(x = \frac{a}{{a + 2}}\)
Đáp án : B
Chuyển những đơn thức có chứa biến về một vế, những đơn thức không chứa biến về một vế.
\(\begin{array}{l}{a^2}x + 2ax + 4 = {a^2}\\ \Leftrightarrow {a^2}x + 2ax = {a^2} - 4\\ \Leftrightarrow x\left( {{a^2} + 2a} \right) = {a^2} - 4\\ \Leftrightarrow x = \frac{{{a^2} - 4}}{{{a^2} + 2a}}\\ \Leftrightarrow x = \frac{{\left( {a - 2} \right)\left( {a + 2} \right)}}{{a\left( {a + 2} \right)}}\\ \Leftrightarrow x = \frac{{a - 2}}{a}\end{array}\)
Tính giá trị phân thức \(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}}\) tại \(x = 1\).
-
A.
\(A = 2\)
-
B.
\(A = 1\)
-
C.
\(A = \frac{1}{2}\)
-
D.
\(A = - \frac{1}{2}\)
Đáp án : D
Rút gọn phân thức \(A\):
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Tính giá trị của phân thức \(A\) tại \(x = 1\)
\(A = \frac{{{x^2} + x - 6}}{{2{x^2} + 6x}} = \frac{{{x^2} + 3x - 2x - 6}}{{2x\left( {x + 3} \right)}} = \frac{{x\left( {x + 3} \right) - 2\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{\left( {x - 2} \right)\left( {x + 3} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{x - 2}}{{2x}}\)
Tại \(x = 1\) ta có \(A = \frac{{1 - 2}}{{2.1}} = \frac{{ - 1}}{2}\)
Cho \(A = \frac{{2{a^2} + 8ab + 8{b^2}}}{{a + 2b}}\) và \(a + 2b = 5\). Khi đó:
-
A.
\(A = 0\)
-
B.
\(A = 5\)
-
C.
\(A = 1\)
-
D.
\(A = 10\)
Đáp án : D
Rút gọn phân thức \(A\):
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Tính giá trị của phân thức \(A\) với \(a + 2b = 5\)
\(A = \frac{{2{a^2} + 8ab + 8{b^2}}}{{a + 2b}} = \frac{{2\left( {{a^2} + 4ab + 4{b^2}} \right)}}{{a + 2b}} = \frac{{2{{\left( {a + 2b} \right)}^2}}}{{a + 2b}} = 2\left( {a + 2b} \right) = 2.5 = 10\)
Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{5}{{3x + 2}}\) có giá trị là một số nguyên?
-
A.
0.
-
B.
1.
-
C.
2.
-
D.
3.
Đáp án : C
Để phân thức \(\frac{5}{{3x + 2}}\) có giá trị là một số nguyên thì \(5 \vdots \left( {3x + 2} \right)\)
Điều kiện: \(3x + 2 \ne 0 \Leftrightarrow x \ne \frac{{ - 2}}{3}\)
Để \(\frac{5}{{3x + 2}} \in \mathbb{Z} \Rightarrow \left( {3x + 2} \right) \in \left( 5 \right) = \left\{ { - 5; - 1;1;5} \right\}\)
Với \(3x + 2 = - 5 \Leftrightarrow x = - \frac{7}{3}\) (loại vì \(x \notin \mathbb{Z}\))
Với \(3x + 2 = - 1 \Leftrightarrow x = - 1\) (thỏa mãn \(x \in \mathbb{Z}\))
Với \(3x + 2 = 1 \Leftrightarrow x = - \frac{1}{3}\)(loại vì \(x \notin \mathbb{Z}\))
Với \(3x + 2 = 5 \Leftrightarrow x = 1\)(thỏa mãn \(x \in \mathbb{Z}\))
Vậy có hai giá trị x để phân thức \(\frac{5}{{3x + 2}}\) có giá trị là một số nguyên.
Cho các phân thức \(\frac{{2x}}{{3 - 3x}};\,\frac{{5x - 4}}{{4x + 4}};\,\frac{{{x^2} + x + 1}}{{2\left( {{x^2} - 1} \right)}}\)
An nói rằng mẫu thức chung của các phân thức trên là \(2\left( {{x^2} - 1} \right)\)
Bình nói rằng mẫu thức chung của các phân thức trên là \(12\left( {x - 1} \right)\left( {x + 1} \right)\)
Chọn câu đúng?
-
A.
Bạn An đúng, bạn Bình sai.
-
B.
Bạn An sai, bạn Bình đúng.
-
C.
Hai bạn đều đúng.
-
D.
Hai bạn đều sai.
Đáp án : B
Chọn mẫu thức chung (MTC) của hai mẫu thức bằng cách lấy tích của các nhân tử được chọn như sau:
- Nhân tử bằng số của MTC là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã cho (nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số ở MTC là BCNN của chúng);
- Với mỗi lũy thừa của cùng một biểu thức có mặt trong các mẫu thức, ta chọn lũy thừa với số mũ cao nhất.
Ta có các phân thức \(\frac{{2x}}{{3 - 3x}};\,\frac{{5x - 4}}{{4x + 4}};\,\frac{{{x^2} + x + 1}}{{2\left( {{x^2} - 1} \right)}}\) có mẫu thức lần lượt là: \(3 - 3x = 3\left( {1 - x} \right);\,4x + 4 = 4\left( {x + 1} \right)\) và \(2\left( {{x^2} - 1} \right) = 2\left( {x - 1} \right)\left( {x + 1} \right)\)
Vì \(\left( {x - 1} \right)\left( {x + 1} \right) = {x^2} - 1\) và \(BCNN\left( {2;3;4} \right) = 12\) nên mẫu thức chung của các phân thức \(\frac{{2x}}{{3 - 3x}};\,\frac{{5x - 4}}{{4x + 4}};\,\frac{{{x^2} + x + 1}}{{2\left( {{x^2} - 1} \right)}}\) là \(12\left( {x - 1} \right)\left( {x + 1} \right)\).
Vậy An sai, Bình đúng.
Rút gọn phân thức \(A = \frac{{4|x - 3| - 2|x - 5|}}{{9{x^2} - 66x + 121}}\) biết \(3 < x < 5\)
-
A.
\(\frac{2}{{3x - 11}}\)
-
B.
\(\frac{4}{{3x - 11}}\)
-
C.
\(\frac{{2\left( {x + 1} \right)}}{{{{\left( {3x - 11} \right)}^2}}}\)
-
D.
\(\frac{{2\left( {x + 1} \right)}}{{{{\left( {3x + 11} \right)}^2}}}\)
Đáp án : A
Giá trị tuyệt đối của \(x\) được xác định như sau:
\(|x| = \left\{ \begin{array}{l}x|x \ge 0\\ - x|x < 0\end{array} \right.\)
Muốn rút gọn một phân thức đại số ta làm như sau:
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
\(3 < x < 5 \Rightarrow \left\{ \begin{array}{l}x - 3 > 0\\x - 5 < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left| {x - 3} \right| = x - 3\\\left| {x - 5} \right| = 5 - x\end{array} \right.\)
\(\begin{array}{l} \Rightarrow A = \frac{{4|x - 3| - 2|x - 5|}}{{9{x^2} - 66x + 121}} = \frac{{4\left( {x - 3} \right) - 2\left( {5 - x} \right)}}{{{{\left( {3x} \right)}^2} - 2.3x.11 + {{11}^2}}}\\ = \frac{{4x - 12 - 10 + 2x}}{{{{\left( {3x - 11} \right)}^2}}} = \frac{{6x - 22}}{{{{\left( {3x - 11} \right)}^2}}} = \frac{{2\left( {3x - 11} \right)}}{{{{\left( {3x - 11} \right)}^2}}} = \frac{2}{{3x - 11}}\end{array}\)
Tìm giá trị lớn nhất của phân thức \(A = \frac{5}{{{x^2} - 6x + 10}}\)
-
A.
5
-
B.
\(\frac{1}{5}\)
-
C.
9
-
D.
1
Đáp án : A
Để tìm giá trị lớn nhất của phân thức \(A = \frac{5}{{{x^2} - 6x + 10}}\) cần tìm giá trị nhỏ nhất của phân thức \({x^2} - 6x + 10\).
Ta có: \({x^2} - 6x + 10 = {x^2} - 6x + 9 + 1 = {\left( {x - 3} \right)^2} + 1\)
Vì \({\left( {x - 3} \right)^2} \ge 0\forall x\) nên \({\left( {x - 3} \right)^2} + 1 \ge 1\forall x\) hay \({x^2} - 6x + 10 \ge 1\forall x\)
\( \Rightarrow \frac{5}{{{x^2} - 6x + 10}} \le \frac{5}{1} = 5 \Leftrightarrow A \le 5\)
Dấu “=” xảy ra \( \Leftrightarrow {\left( {x - 3} \right)^2} = 0 \Leftrightarrow x = 3\)
Vậy với \(x = 3\) thì \(A\) đạt giá trị lớn nhất là 5.
Giá trị của biểu thức \(A = \frac{{\left( {2{x^2} + 2x} \right){{\left( {x - 2} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}}\) với \(x = \frac{1}{2}\) là
-
A.
\(A = \frac{{10}}{2}\)
-
B.
\(A = - \frac{6}{5}\)
-
C.
\(A = \frac{6}{5}\)
-
D.
\(A = \frac{{25}}{2}\)
Đáp án : B
Rút gọn biểu thức \(A\):
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Tính giá trị của biểu thức \(A\) với \(x = \frac{1}{2}\)
\(A = \frac{{\left( {2{x^2} + 2x} \right){{\left( {x - 2} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}} = \frac{{2x\left( {x + 1} \right){{\left( {x - 2} \right)}^2}}}{{x\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + 1} \right)}} = \frac{{2\left( {x - 2} \right)}}{{x + 2}}\)
Với \(x = \frac{1}{2}\) ta có \(A = \frac{{2\left( {\frac{1}{2} - 2} \right)}}{{\frac{1}{2} + 2}} = - \frac{6}{5}\)
Với giá trị nào của \(x\) thì \(A = \frac{{{x^2} + 2x + 4}}{{{x^2} + 4x + 4}}\) đạt giá trị nhỏ nhất?
-
A.
1
-
B.
2
-
C.
0
-
D.
-2
Đáp án : B
Để tìm giá trị nhỏ nhất của phân thức \(A = \frac{{{x^2} + 2x + 4}}{{{x^2} + 4x + 4}}\) ta cần biến đổi A thành dạng \({(P(x))^2} + Q\), khi đó \(GTNN\left( A \right){\rm{ }} = {\rm{ }}Q\).
Điều kiện: \({x^2} + 4x + 4 \ne 0 \Leftrightarrow {\left( {x + 2} \right)^2} \ne 0 \Leftrightarrow x \ne - 2\)
\(\begin{array}{l}A = \frac{{{x^2} + 2x + 4}}{{{x^2} + 4x + 4}} = \frac{{{x^2} + 4x + 4}}{{{x^2} + 4x + 4}} - \frac{{2x}}{{{x^2} + 4x + 4}} = 1 - \frac{{2x}}{{{{\left( {x + 2} \right)}^2}}}\\ = 1 - \frac{{2x + 4}}{{{{\left( {x + 2} \right)}^2}}} + \frac{4}{{{{\left( {x + 2} \right)}^2}}} = 1 - \frac{2}{{x + 2}} + {\left( {\frac{2}{{x + 2}}} \right)^2} = {\left( {\frac{2}{{x + 2}} - \frac{1}{2}} \right)^2} + \frac{3}{4}\end{array}\)
Ta có \({\left( {\frac{2}{{x + 2}} - \frac{1}{2}} \right)^2} \ge 0\forall x \Rightarrow {\left( {\frac{2}{{x + 2}} - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\forall x\) hay \(A \ge \frac{3}{4}\)
Dấu “=” xảy ra \( \Leftrightarrow {\left( {\frac{2}{{x + 2}} - \frac{1}{2}} \right)^2} = 0 \Leftrightarrow \frac{2}{{x + 2}} = \frac{1}{2} \Leftrightarrow x = 2\) (thỏa mãn)
Vậy \(A = \frac{{{x^2} + 2x + 4}}{{{x^2} + 4x + 4}}\) đạt giá trị nhỏ nhất là \(\frac{3}{4}\) tại \(x = 2\)
Có bao nhiêu giá trị nguyên của \(x\) để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên?
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Đáp án : D
Để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên thì \(\left( {{x^3} + 2{x^2} + 4x + 6} \right) \vdots \left( {x + 2} \right)\)
Điều kiện: \(x + 2 \ne 0 \Leftrightarrow x \ne - 2\)
\(\begin{array}{l}\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}} = \frac{{{x^3} + 2{x^2} + 4x + 8 - 2}}{{x + 2}} = \frac{{{x^2}\left( {x + 2} \right) + 4\left( {x + 2} \right) - 2}}{{x + 2}}\\ = \frac{{\left( {{x^2} + 4} \right)\left( {x + 2} \right) - 2}}{{x + 2}} = {x^2} + 4 - \frac{2}{{x + 2}}\end{array}\)
Ta có \({x^2} \in \mathbb{Z}\,\,\,\forall x \in \mathbb{Z}\) nên để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên thì \(\frac{2}{{x + 2}} \in \mathbb{Z} \Rightarrow \left( {x + 2} \right) \in \) Ư\(\left( 2 \right) = \left\{ { - 2; - 1;1;2} \right\}\)
\(\begin{array}{l} + )\,x + 2 = - 2 \Leftrightarrow x = - 4\,\left( {TM} \right)\\ + )\,x + 2 = - 1 \Leftrightarrow x = - 3\,\left( {TM} \right)\\ + )\,x + 2 = 1 \Leftrightarrow x = - 1\,\left( {TM} \right)\\ + )\,x + 2 = 2 \Leftrightarrow x = 0\,\left( {TM} \right)\end{array}\)
Vậy có 4 giá trị nguyên của \(x\) để phân thức \(\frac{{{x^3} + 2{x^2} + 4x + 6}}{{x + 2}}\) có giá trị nguyên.
Tính giá trị của biểu thức \(A = \frac{{\left( {{x^2} - 4{y^2}} \right)\left( {x - 2y} \right)}}{{{x^2} - 4xy + 4{y^2}}}\) tại \(x = 98\) và \(y = 1\)
-
A.
99
-
B.
100
-
C.
199
-
D.
96
Đáp án : B
Rút gọn phân thức \(A\):
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Tính giá trị của phân thức \(A\) với \(x = 98\) và \(y = 1\)
\(A = \frac{{\left( {{x^2} - 4{y^2}} \right)\left( {x - 2y} \right)}}{{{x^2} - 4xy + 4{y^2}}} = \frac{{\left( {x - 2y} \right)\left( {x + 2y} \right)\left( {x - 2y} \right)}}{{{{\left( {x - 2y} \right)}^2}}} = \frac{{{{\left( {x - 2y} \right)}^2}\left( {x + 2y} \right)}}{{{{\left( {x - 2y} \right)}^2}}} = x + 2y\)
Tại \(x = 98\) và \(y = 1\) ta có \(A = 98 + 2.1 = 100\)
Để có các phân thức có cùng mẫu, ta cần điền vào các chỗ trống \(\frac{{x + 3}}{{{x^2} + 8x + 15}} = \frac{{x - 3}}{{...}};\,\frac{{5x - 15}}{{{x^2} - 6x + 9}} = \frac{{...}}{{\left( {x - 3} \right)\left( {x + 5} \right)}}\). Các đa thức lần lượt là:
-
A.
\(x - 3;\,5x + 10\)
-
B.
\({\left( {x - 3} \right)^2}\left( {x + 5} \right);\,5x - 25\)
-
C.
\(\left( {x - 3} \right)\left( {x + 5} \right);\,5x + 25\)
-
D.
\(\left( {x - 3} \right)\left( {x + 5} \right);\,x + 5\)
Đáp án : C
Dựa vào tính chất cơ bản của phân thức đại số:
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức 0 thì được một phân thức bằng phân thức đã cho:
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (\(M\) là một đa thức khác đa thức 0)
- Nếu tử và mẫu của một phân thức có nhân tử chung thì khi chia cả tử và mẫu cho nhân tử chung đó ta được một phân thức bằng phân thức đã cho:
\(\frac{{A:N}}{{B:N}} = \frac{A}{B}\) (\(N\) là một nhân tử chung)
\(\begin{array}{l}{x^2} + 8x + 15 = {x^2} + 5x + 3x + 15 = x\left( {x + 5} \right) + 3\left( {x + 5} \right) = \left( {x + 3} \right)\left( {x + 5} \right)\\ \Rightarrow \frac{{x + 3}}{{{x^2} + 8x + 15}} = \frac{{x + 3}}{{\left( {x + 3} \right)\left( {x + 5} \right)}} = \frac{1}{{x + 5}}\end{array}\)
\(\begin{array}{l}{x^2} - 6x + 9 = {\left( {x - 3} \right)^2}\\ \Rightarrow \frac{{5x - 15}}{{{x^2} - 6x + 9}} = \frac{{5\left( {x - 3} \right)}}{{{{\left( {x - 3} \right)}^2}}} = \frac{5}{{x - 3}}\end{array}\)
Mẫu thức chung của hai phân thức sau khi rút gọn là \(\left( {x + 5} \right)\left( {x - 3} \right)\)
Nhân tử phụ của phân thức \(\frac{{x + 3}}{{{x^2} + 8x + 15}}\) là \(x - 3\)
\( \Rightarrow \frac{{x + 3}}{{{x^2} + 8x + 15}} = \frac{1}{{x + 5}} = \frac{{x - 3}}{{\left( {x - 3} \right)\left( {x + 5} \right)}}\)
Nhân tử phụ của phân thức \(\frac{{5x - 15}}{{{x^2} - 6x + 9}}\) là \(x + 5\)
\( \Rightarrow \frac{{5x - 15}}{{{x^2} - 6x + 9}} = \frac{5}{{x - 3}} = \frac{{5\left( {x + 5} \right)}}{{\left( {x - 3} \right)\left( {x + 5} \right)}} = \frac{{5x + 25}}{{\left( {x - 3} \right)\left( {x + 5} \right)}}\)
Vậy các đa thức cần tìm lần lượt là: \(\left( {x - 3} \right)\left( {x + 5} \right);\,5x + 25\)
Cho \(a > b > 0\). Chọn câu đúng?
-
A.
\(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} = \frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\)
-
B.
\(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} > 2\frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\)
-
C.
\(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} > \frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\)
-
D.
\(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} < \frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\)
Đáp án : D
Dựa vào tính chất cơ bản của phân thức đại số:
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức 0 thì được một phân thức bằng phân thức đã cho:
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (\(M\) là một đa thức khác đa thức 0)
- Nếu tử và mẫu của một phân thức có nhân tử chung thì khi chia cả tử và mẫu cho nhân tử chung đó ta được một phân thức bằng phân thức đã cho:
\(\frac{{A:N}}{{B:N}} = \frac{A}{B}\) (\(N\) là một nhân tử chung)
Do \(a > b > 0\) nên \(a - b > 0;\,a + b > 0 \Rightarrow \left( {a - b} \right)\left( {a + b} \right) > 0 \Leftrightarrow {a^2} - {b^2} > 0\)
Ta có: \(\frac{{{{\left( {a + b} \right)}^2}}}{{{a^2} - {b^2}}} = \frac{{{{\left( {a + b} \right)}^2}}}{{\left( {a - b} \right)\left( {a + b} \right)}} = \frac{{{{\left( {a + b} \right)}^2}:\left( {a + b} \right)}}{{\left( {a - b} \right)\left( {a + b} \right):\left( {a + b} \right)}} = \frac{{a + b}}{{a - b}}\)
Nhân cả tử và mẫu của phân thức với \(\left( {a - b} \right)\) ta được:
\(\frac{{a + b}}{{a - b}} = \frac{{\left( {a + b} \right)\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - b} \right)}} = \frac{{{a^2} - {b^2}}}{{{{\left( {a - b} \right)}^2}}} < \frac{{{a^2} + {b^2}}}{{{{\left( {a - b} \right)}^2}}}\) (do \(0 < {a^2} - {b^2} < {a^2} + {b^2}\))
Với điều kiện nào thì hai phân thức \(\frac{{2 - 2x}}{{{x^3} - 1}}\) và \(\frac{{2x + 2}}{{{x^2} + x + 1}}\) bằng nhau?
-
A.
\(x = 2\)
-
B.
\(x \ne 1\)
-
C.
\(x = - 2\)
-
D.
\(x = - 1\)
Đáp án : C
Dựa vào tính chất cơ bản của phân thức đại số:
Nếu tử và mẫu của một phân thức có nhân tử chung thì khi chia cả tử và mẫu cho nhân tử chung đó ta được một phân thức bằng phân thức đã cho:
\(\frac{{A:N}}{{B:N}} = \frac{A}{B}\) (\(N\) là một nhân tử chung)
Điều kiện: \(\left\{ \begin{array}{l}{x^3} - 1 \ne 0\\{x^2} + x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\{\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ne 0\,\forall x\end{array} \right. \Leftrightarrow x \ne 1\)
\(\begin{array}{l}\frac{{2 - 2x}}{{{x^3} - 1}} = \frac{{2x + 2}}{{{x^2} + x + 1}} \Leftrightarrow \frac{{2\left( {1 - x} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{2\left( {x + 1} \right)}}{{{x^2} + x + 1}}\\ \Leftrightarrow \frac{{ - 2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{2\left( {x + 1} \right)}}{{{x^2} + x + 1}} \Leftrightarrow \frac{{ - 2\left( {x - 1} \right):\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right):\left( {x - 1} \right)}} = \frac{{2\left( {x + 1} \right)}}{{{x^2} + x + 1}}\\ \Leftrightarrow \frac{{ - 2}}{{{x^2} + x + 1}} = \frac{{2\left( {x + 1} \right)}}{{{x^2} + x + 1}} \Leftrightarrow - 2 = 2\left( {x + 1} \right) \Leftrightarrow x + 1 = - 1 \Leftrightarrow x = - 2\,(tm)\end{array}\)
Cho \(A = \frac{{{x^4} - {x^3} - x + 1}}{{{x^4} + {x^3} + 3{x^2} + 2x + 2}}\). Kết luận nào sau đây đúng?
-
A.
\(A\) luôn nhận giá trị không âm với mọi \(x\)
-
B.
\(A\) luôn nhận giá trị dương với mọi \(x\)
-
C.
Giá trị của \(A\) không phụ thuộc vào \(x\)
-
D.
\(A\) luôn nhận giá trị âm với mọi \(x\)
Đáp án : A
Rút gọn phân thức \(A\):
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Đánh giá dấu của phân thức \(A\).
\(\begin{array}{l}A = \frac{{{x^4} - {x^3} - x + 1}}{{{x^4} + {x^3} + 3{x^2} + 2x + 2}} = \frac{{{x^3}\left( {x - 1} \right) - \left( {x - 1} \right)}}{{{x^4} + {x^3} + {x^2} + 2{x^2} + 2x + 2}} = \frac{{\left( {{x^3} - 1} \right)\left( {x - 1} \right)}}{{{x^2}\left( {{x^2} + x + 1} \right) + 2\left( {{x^2} + x + 1} \right)}}\\ = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}{{\left( {{x^2} + 2} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}\left( {{x^2} + x + 1} \right)}}{{\left( {{x^2} + 2} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^2} + 2}}\end{array}\)Ta có: \({\left( {x - 1} \right)^2} \ge 0\forall x\) và \({x^2} + 2 > 0\forall x\) nên \(A = \frac{{{{\left( {x - 1} \right)}^2}}}{{{x^2} + 2}} \ge 0\forall x\)
Vậy \(A\) luôn nhận giá trị không âm với mọi \(x\).
Cho \(abc \ne 0;\,a + b = c\). Tính giá trị của phân thức \(A = \frac{{\left( {{a^2} + {b^2} - {c^2}} \right)\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{c^2} + {a^2} - {b^2}} \right)}}{{8{a^2}{b^2}{c^2}}}\)
-
A.
-1
-
B.
1
-
C.
2
-
D.
-2
Đáp án : A
Từ điều kiện \(a + b = c\) tính các đa thức \({a^2} + {b^2} - {c^2};\,{b^2} + {c^2} - {a^2};\,{c^2} + {a^2} - {b^2}\) sau đó rút gọn phân thức \(A\).
\(\begin{array}{l}a + b = c \Rightarrow {\left( {a + b} \right)^2} = {c^2} \Leftrightarrow {a^2} + 2ab + {b^2} = {c^2} \Rightarrow {a^2} + {b^2} - {c^2} = - 2ab\\a + b = c \Rightarrow a = c - b \Rightarrow {a^2} = {\left( {c - b} \right)^2} \Leftrightarrow {a^2} = {c^2} - 2bc + {b^2} \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\\a + b = c \Rightarrow b = c - a \Rightarrow {b^2} = {\left( {c - a} \right)^2} \Leftrightarrow {b^2} = {c^2} - 2ac + {a^2} \Rightarrow {a^2} + {c^2} - {b^2} = 2ac\end{array}\)
\( \Rightarrow A = \frac{{\left( {{a^2} + {b^2} - {c^2}} \right)\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{c^2} + {a^2} - {b^2}} \right)}}{{8{a^2}{b^2}{c^2}}} = \frac{{\left( { - 2ab} \right)\left( {2bc} \right)\left( {2ac} \right)}}{{8{a^2}{b^2}{c^2}}} = \frac{{ - 8{a^2}{b^2}{c^2}}}{{8{a^2}{b^2}{c^2}}} = - 1\)
Cho \(a,\,b,\,c,\,d\) thỏa mãn \(a + b + c + d = 0;\,ab + ac + bc = 1\). Rút gọn biểu thức \(A = \frac{{3\left( {ab - c{\rm{d}}} \right)\left( {bc - ad} \right)\left( {ca - bd} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}}\).
-
A.
-1
-
B.
1
-
C.
3
-
D.
-3
Đáp án : C
Từ điều kiện \(a + b + c + d = 0\) và \(ab + ac + bc = 1\) tính các đa thức \(ab - cd;\,bc - ad;\,ca - bd\) sau đó rút gọn biểu thức \(A\).
\(\begin{array}{l}a + b + c + d = 0 \Rightarrow a + b + c = - d\\ \Rightarrow ab - cd = ab + c\left( {a + b + c} \right) = ab + ac + bc + {c^2} = {c^2} + 1;\\bc - ad = bc + a\left( {a + b + c} \right) = bc + {a^2} + ab + ac = {a^2} + 1;\\ca - bd = ca + b\left( {a + b + c} \right) = ca + ba + {b^2} + bc = {b^2} + 1\end{array}\)
\( \Rightarrow A = \frac{{3\left( {ab - c{\rm{d}}} \right)\left( {bc - ad} \right)\left( {ca - bd} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}} = \frac{{3\left( {{c^2} + 1} \right)\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}} = 3\)
Tính giá trị của phân thức \(A = \frac{{{a^3} - {b^3} + {c^3} + 3abc}}{{{{\left( {a + b} \right)}^2} + {{\left( {b + c} \right)}^2} + {{\left( {c - a} \right)}^2}}}\) biết \(a + c - b = 10\).
-
A.
0
-
B.
1
-
C.
4
-
D.
5
Đáp án : D
Rút gọn phân thức \(A\):
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
Tính giá trị của phân thức \(A\) với \(a + c - b = 10\)
\(\begin{array}{l}(1)\,{a^3} - {b^3} + {c^3} + 3abc\\ = \left( {{a^3} + 3{a^2}c + 3a{c^2} + {c^3}} \right) - 3{a^2}c - 3a{c^2} + 3abc - {b^3}\\ = {\left( {a + c} \right)^3} - {b^3} - 3ac\left( {a + c - b} \right)\\ = \left( {a + c - b} \right)\left[ {{{\left( {a + c} \right)}^2} + \left( {a + c} \right)b + {b^2}} \right] - 3ac\left( {a + c - b} \right)\\ = \left( {a + c - b} \right)\left( {{a^2} + 2ac + {c^2} + ab + bc + {b^2}} \right) - 3ac\left( {a + c - b} \right)\\ = \left( {a + c - b} \right)\left( {{a^2} + 2ac + {c^2} + ab + bc + {b^2} - 3ac} \right)\\ = \left( {a + c - b} \right)\left( {{a^2} + {b^2} + {c^2} + ab + bc - ac} \right)\end{array}\)
\(\begin{array}{l}(2)\,{\left( {a + b} \right)^2} + {\left( {b + c} \right)^2} + {\left( {c - a} \right)^2}\\ = \left( {{a^2} + 2ab + {b^2}} \right) + \left( {{b^2} + 2bc + {c^2}} \right) + \left( {{c^2} - 2ac + {a^2}} \right)\\ = 2{a^2} + 2{b^2} + 2{c^2} + 2ab + 2bc - 2ac\\ = 2\left( {{a^2} + {b^2} + {c^2} + ab + bc - ac} \right)\end{array}\)
\(\begin{array}{l} \Rightarrow A = \frac{{{a^3} - {b^3} + {c^3} + 3abc}}{{{{\left( {a + b} \right)}^2} + {{\left( {b + c} \right)}^2} + {{\left( {c - a} \right)}^2}}} = \frac{{\left( {a + c - b} \right)\left( {{a^2} + {b^2} + {c^2} + ab + bc - ac} \right)}}{{2\left( {{a^2} + {b^2} + {c^2} + ab + bc - ac} \right)}}\\ = \frac{{a + c - b}}{2} = \frac{{10}}{2} = 5\end{array}\)
Biểu thức \(A = \frac{{{x^2} + 5x + 5}}{{{x^2} + 4x + 4}}\) có giá trị lớn nhất là:
-
A.
\(\frac{5}{4}\)
-
B.
1
-
C.
\(\frac{4}{5}\)
-
D.
2
Đáp án : A
Dựa vào tính chất cơ bản của phân thức đại số:
Nếu tử và mẫu của một phân thức có nhân tử chung thì khi chia cả tử và mẫu cho nhân tử chung đó ta được một phân thức bằng phân thức đã cho:
\(\frac{{A:N}}{{B:N}} = \frac{A}{B}\) (\(N\) là một nhân tử chung)
Điều kiện:
\(\begin{array}{l}A = \frac{{{x^2} + 5x + 5}}{{{x^2} + 4x + 4}} = \frac{{{x^2} + 4x + 4}}{{{x^2} + 4x + 4}} + \frac{{x + 1}}{{{x^2} + 4x + 4}} = 1 + \frac{{x + 1}}{{{{\left( {x + 2} \right)}^2}}}\\ = 1 + \frac{{x + 2}}{{{{\left( {x + 2} \right)}^2}}} - \frac{1}{{{{\left( {x + 2} \right)}^2}}} = 1 + \frac{1}{{x + 2}} - \frac{1}{{{{\left( {x + 2} \right)}^2}}}\\ = 1 - \left[ {\frac{1}{{{{\left( {x + 2} \right)}^2}}} - \frac{1}{{x + 2}} + \frac{1}{4} - \frac{1}{4}} \right] = 1 - \left[ {\frac{1}{{{{\left( {x + 2} \right)}^2}}} - \frac{1}{{x + 2}} + \frac{1}{4}} \right] + \frac{1}{4}\\ = \frac{5}{4} - {\left( {\frac{1}{{x + 2}} - \frac{1}{2}} \right)^2}\end{array}\)
Ta có \({\left( {\frac{1}{{x + 2}} - \frac{1}{2}} \right)^2} \ge 0\forall x \ne - 2 \Rightarrow \frac{5}{4} - {\left( {\frac{1}{{x + 2}} - \frac{1}{2}} \right)^2} \le \frac{5}{4}\forall x \ne - 2\) hay \(A \le \frac{5}{4}\)
Dấu “=” xảy ra \( \Leftrightarrow {\left( {\frac{1}{{x + 2}} - \frac{1}{2}} \right)^2} = 0 \Leftrightarrow \frac{1}{{x + 2}} = \frac{1}{2} \Leftrightarrow x = 0\,(tm)\)
Vậy biểu thức \(A = \frac{{{x^2} + 5x + 5}}{{{x^2} + 4x + 4}}\) có giá trị lớn nhất là \(\frac{5}{4}\) tại \(x = 0\).