Cho góc nhọn \(\alpha \). Biểu thức (sin\(\alpha \). cot\(\alpha \))2 + (cos\(\alpha \) . tan\(\alpha \))2 bằng:
Cho các vectơ \(\overrightarrow a ,\overrightarrow b \ne \overrightarrow 0 \). Phát biểu nào sau đây là đúng?
Cho tứ giác ABCD. Biểu thức \(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {BC} .\overrightarrow {CD} + \overrightarrow {CA} .\overrightarrow {CD} \) bằng:
Cho góc nhọn \(\alpha \). Biểu thức tan\(\alpha \). tan(90° - \(\alpha \)) bằng:
Cho \(\alpha \) thoả mãn \(\sin \alpha = \frac{3}{5}\). Tính cos\(\alpha \), tan\(\alpha \), cot\(\alpha \), sin(90° - \(\alpha \)), cos(90° - \(\alpha \)), sin(180° – \(\alpha \)),
Cho tam giác ABC có AB = 4, AC = 6, \(\widehat {BAC}\) = 60°. Tính (làm tròn kết quả đến hàng đơn vị):
Cho tam giác ABC. Chứng minh rằng \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\) (*)
Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Tính:
Cho ba điểm phân biệt I, A, B và số thực k ≠ 1 thoả mãn \(\overrightarrow {IA} = k\overrightarrow {IB} \). Chứng minh rằng với O là điểm bất kì ta có:
Cho tam giác ABC có AB = 4, AC = 5, \(\widehat {BAC}\) = 120°. Điểm M là trung điểm của đoạn thẳng BC, điểm D thoả mãn \(\overrightarrow {AD} = \frac{2}{5}\overrightarrow {AC} \). Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) và chứng minh \(AM \bot BD\)
Một người quan sát đứng ở bờ sông muốn đo độ rộng của khúc sông chỗ chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song
Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) và \(\left| {\overrightarrow a } \right| = 4,\left| {\overrightarrow b } \right| = 5,\left( {\overrightarrow a ,\overrightarrow b } \right) = {135^0}\). Tính \(\left( {\overrightarrow a + 2\overrightarrow b } \right).\left( {2\overrightarrow a - \overrightarrow b } \right)\)
a) Chứng minh đẳng thức \({\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2\overrightarrow a .\overrightarrow b \) với \(\overrightarrow a ,\overrightarrow b \) là hai vectơ bất kì
Cho tam giác ABC có ba trung tuyến AD, BE, CF. Chứng minh rằng:
Cho tử giác ABCD. M là điểm thay đổi trong mặt phẳng thoả mãn \(\left( {\overrightarrow {MA} + \overrightarrow {MB} } \right).\left( {\overrightarrow {MC} + \overrightarrow {MD} } \right) = 0\). Chứng minh rằng điểm M luôn nằm trên một đường tròn cố định.
Cho tam giác ABC và đường thẳng d không có điểm chung với bất kì cạnh nào của tam giác. M là điểm thay đổi trên đường thẳng d. Xác định vị trí của M sao cho biểu thức \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.