1. Vecto pháp tuyến và cặp vecto chỉ phương của mặt phẳng Vecto pháp tuyến
a) Cho vectơ (vec n) khác (vec 0). Qua một điểm ({M_0}) cố định trong không gian, có bao nhiêu mặt phẳng (left( alpha right)) vuông góc với giá của vectơ (vec n)?
Trong không gian (Oxyz), cho mặt phẳng (left( alpha right)) có cặp vectơ chỉ phương (vec a = left( {{a_1};{a_2};{a_3}} right)), (vec b = left( {{b_1};{b_2};{b_3}} right)). Xét vectơ (vec n = left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} right)).
Trong không gian (Oxyz), cho mặt phẳng (left( alpha right)) đi qua điểm ({M_0}left( {1;2;3} right)) và nhận (vec n = left( {7;5;2} right)) làm vectơ pháp tuyến. Gọi (Mleft( {x;y;z} right)) là một điểm tuỳ ý trong không gian. Tính tích vô hướng (vec n.overrightarrow {{M_0}M} ) theo (x,y,z).
Cho hai mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có phương trình là \(\left( \alpha \right):x - 2y + 3z + 1 = 0\) và \(\left( \beta \right):2x - 4y + 6z + 1 = 0\). a) Nêu nhận xét về các vectơ pháp tuyến của hai mặt phẳng trên. b) Cho điểm \(M\left( { - 1;0;0} \right)\). Hãy cho biết các mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có đi qua \(M\) không. c) Giải thích tại sao \(\left( \alpha \right)\) song song với \(\left( \beta \right)\).
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(Ax + By + Cz + D = 0\) và điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\). Gọi \({M_1}\left( {{x_1};{y_1};{z_1}} \right)\) là hình chiếu vuông góc của \({M_0}\) trên \(\left( \alpha \right)\)(hình dưới đây).
Viết phương trình của mặt phẳng: a) Đi qua điểm (Aleft( {2;0;0} right)) và nhận (vec n = left( {2;1; - 1} right)) làm vectơ pháp tuyến. b) Đi qua điểm (Bleft( {1;2;3} right)) và song song với giá của mỗi vectơ (vec u = left( {1;2;3} right)) và (vec v = left( { - 2;0;1} right)). c) Đi qua ba điểm (Aleft( {1;0;0} right)), (Bleft( {0;2;0} right)) và (Cleft( {0;0;4} right)).
a) Lập phương trình của các mặt phẳng toạ độ \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\). b) Lập phương trình của các mặt phẳng đi qua điểm \(A\left( { - 1;9;8} \right)\) và lần lượt song song với các mặt phẳng toạ độ trên.
Cho tứ diện (ABCD) có các đỉnh (Aleft( {4;0;2} right)), (Bleft( {0;5;1} right)), (Cleft( {4; - 1;3} right)), (Dleft( {3; - 1;5} right)). a) Hãy viết phương trình của các mặt phẳng (left( {ABC} right)) và (left( {ABD} right)). b) Hãy viết phương trình mặt phẳng (left( P right)) đi qua cạnh (BC) và song song với cạnh (AD).
Viết phương trình mặt phẳng \(\left( Q \right)\) đi qua điểm \(C\left( {1; - 5;0} \right)\) và song song với mặt phẳng \(\left( P \right):3x - 5y + 4z - 2024 = 0.\)
Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua hai điểm \(A\left( {1;0;1} \right)\), \(B\left( {5;2;3} \right)\) và vuông góc với mặt phẳng \(\left( \beta \right):2x - y + z - 7 = 0.\)
Viết phương trình mặt phẳng \(\left( R \right)\) đi qua điểm \(A\left( {1;2; - 1} \right)\) và vuông góc với hai mặt phẳng \(\left( P \right):4x - 2y + 6z - 11 = 0\), \(\left( Q \right):2x + 2y + 2z - 7 = 0.\)
Tính khoảng cách từ gốc toạ độ và từ điểm \(M\left( {1; - 2;13} \right)\) đến mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0.\)
Tính khoảng cách giữa hai mặt phẳng song song \(\left( P \right):x - 2 = 0\) và \(\left( Q \right):x - 8 = 0.\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = 2a\), \(AD = 5a\), \(SA = 3a\). Bằng cách thiết lập hệ trục toạ độ \(Oxyz\) như hình dưới đây, tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right).\)
Một công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ \(Oxyz\). Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) của một toà nhà, biết: \(\left( P \right):3x + y - z + 2 = 0\) \(\left( Q \right):6x + 2y - 2z + 11 = 0\) \(\left( R \right):x - 3y + 1 = 0\)