Biết (Fleft( x right) = {e^x}) là một nguyên hàm của hàm số (fleft( x right)) trên (mathbb{R}). Giá trị của (intlimits_0^1 {left[ {3 + fleft( x right)} right]dx} ) bằng: A. (2 + e). B. (3 + e). C. 3. D. (3{rm{x}} + {e^x}).
Phát biểu nào sau đây là đúng? A. (intlimits_a^b {cos xdx} = sin a - sin b). B. (intlimits_a^b {cos xdx} = sin b - sin a). C. (intlimits_a^b {cos xdx} = cos a - cos b). D. (intlimits_a^b {cos xdx} = cos b - cos a).
Phát biểu nào sau đây là đúng? Biết (fleft( x right) = frac{1}{{{{cos }^2}x}}) liên tục trên (left[ {a;b} right]). A. (intlimits_a^b {frac{1}{{{{cos }^2}x}}dx} = cot a - cot b). B. (intlimits_a^b {frac{1}{{{{cos }^2}x}}dx} = cot b - cot a). C. (intlimits_a^b {frac{1}{{{{cos }^2}x}}dx} = tan a - tan b). D. (intlimits_a^b {frac{1}{{{{cos }^2}x}}dx} = tan b - tan a).
Cho (m) thoả mãn (m > 0,m ne 1). Phát biểu nào sau đây là đúng? A. (intlimits_a^b {{m^x}dx} = {m^b} - {m^a}). B. (intlimits_a^b {{m^x}dx} = {m^a} - {m^b}). C. (intlimits_a^b {{m^x}dx} = frac{{{m^b}}}{{ln m}} - frac{{{m^a}}}{{ln m}}). D. (intlimits_a^b {{m^x}dx} = frac{{{m^a}}}{{ln m}} - frac{{{m^b}}}{{ln m}}).
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho các hàm số (y = fleft( x right),y = gleft( x right)) liên tục trên (K). a) (int {left[ {fleft( x right).gleft( x right)} right]dx} = int {fleft( x right)dx} .int {gleft( x right)dx} ). b) (int {left[ {fleft( x right) + gleft( x right)} right]dx} = int {fleft( x right)dx} + int {gleft( x right)dx} ). c) (int {left[ {fleft( x right) - gleft( x right)} right]dx} = int {flef
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho đồ thị hàm số (y = fleft( x right)) và gọi (S) là diện tích hình phẳng được tô màu như Hình 15. a) (S = intlimits_1^2 {fleft( x right)dx} ). b) (S = intlimits_0^{1,5} {left| {fleft( x right)} right|dx} ). c) (S = intlimits_0^{1,5} {fleft( x right)dx} ). d) (S = intlimits_1^2 {left| {fleft( x right)} right|dx} ).
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho đồ thị các hàm số (y = fleft( x right),y = gleft( x right)) và gọi (S) là diện tích hình phẳng được tô màu như Hình 16. a) (S = intlimits_1^2 {left[ {fleft( x right) - gleft( x right)} right]dx} ). b) (S = intlimits_0^2 {left[ {fleft( x right) - gleft( x right)} right]dx} ). c) (S = intlimits_1^2 {left[ {gleft( x right) - fleft( x right)} right]dx} ). d) (S = intlimits_1^2 {left|
a) (int {left( {x + 1} right)left( {{x^2} - x + 1} right)dx} ); b) (int {xleft( {2 - frac{3}{{{x^3}}}} right)dx} ); c) (int {{e^{ - 3{rm{x}}}}dx} ); d) (int {left( {2 - 3{{tan }^2}x} right)dx} ); e) (int {frac{1}{{{2^{ - x + 1}}}}dx} ); g) (int {frac{{{3^{2{rm{x}} + 1}}}}{{{2^x}}}dx} ).
Cho (intlimits_0^1 {left[ {2fleft( x right) - 1} right]dx} = 3). Tính (intlimits_0^1 {fleft( x right)dx} ).
Nêu một ví dụ chỉ ra rằng (int {fleft( x right).gleft( x right)dx} ne int {fleft( x right)dx} .int {gleft( x right)dx} ) với (fleft( x right)) và (gleft( x right)) liên tục trên (mathbb{R}).
Cho hàm số (fleft( x right) = {2^x}). Tìm nguyên hàm (Fleft( x right)) của hàm số (fleft( x right)) trên (mathbb{R}) sao cho (Fleft( 0 right) = {log _2}left( {2e} right)).
Tính: a) (intlimits_0^1 { - 2dx} ); b) (intlimits_0^1 {frac{{2x}}{3}dx} ); c) (intlimits_0^1 {{x^4}dx} ); d) (intlimits_1^3 {2sqrt[3]{x}dx} ); e) (intlimits_1^2 {frac{2}{{3x}}dx} ); g) (intlimits_1^9 {left( {xsqrt x - 2} right)dx} ).
Tính: a) (intlimits_0^{frac{pi }{2}} {sin xdx} ); b) (intlimits_0^{frac{pi }{4}} {cos xdx} ); c) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {frac{1}{{{{sin }^2}x}}dx} ); d) (intlimits_0^{frac{pi }{4}} {frac{1}{{{{cos }^2}x}}dx} ); e) (intlimits_0^{frac{pi }{2}} {left( {sin x - 2} right)dx} ); g) (intlimits_0^{frac{pi }{4}} {left( {3cos x + 2} right)dx} ).
Tính: a) (intlimits_0^2 {{e^{ - 5{rm{x}}}}dx} ); b) (intlimits_0^1 {{3^{x + 2}}dx} ); c) (intlimits_{ - 1}^1 {{3^{2{rm{x}}}}dx} ).
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số (y = {2^x}), trục hoành và hai đường thẳng (x = 1,x = 2). a) Tính diện tích (S) của hình phẳng (H). b) Tính thể tích (V) của khối tròn xoay tạo thành khi cho hình phẳng (H) quay quanh trục (Ox).
Gọi (H) là hình phẳng giới hạn bởi đồ thị (y = {x^2} - 2x), trục hoành và hai đường thẳng (x = 0,x = 2). a) Tính diện tích (S) của hình phẳng (H). b) Tính thể tích (V) của khối tròn xoay tạo thành khi cho hình phẳng (H) quay quanh trục (Ox).
Một vật chuyển động với vận tốc (vleft( t right) = 3 - 2sin tleft( {m/s} right)), trong đó (t) là thời gian tính bằng giây. Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm (t = 0left( s right)) đến thời điểm (t = frac{pi }{4}left( s right)).
Một xe ô tô đang chạy với tốc độ (72km/h) thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó (110m). Người lái xe phản ứng một giây sau đó bằng cách đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ (vleft( t right) = - 20t + 40left( {m/s} right)), trong đó (t) là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi (sleft( t right)) là quãng đường xe ô tô đi được trong (t) giây kể từ lúc đạp phanh. a) Lập công thức biểu diễn h