Cho (fleft( x right)) là hàm số liên tục trên đoạn (left[ {a;b} right]). Giả sử (Fleft( x right),Gleft( x right)) là các nguyên hàm của (fleft( x right)) trên đoạn (left[ {a;b} right]). Trong các phát biểu sau, phát biểu nào sai? A. (Fleft( a right) - Fleft( b right) = Gleft( a right) - Gleft( b right)). B. (intlimits_a^b {fleft( x right)dx} = Fleft( b right) - Fleft( a right)). C. (intlimits_a^b {fleft( x right)dx} = fleft( b right) - fleft(
Phát biểu nào sau đây là đúng? A. (intlimits_a^b {{x^alpha }dx} = {b^{alpha + 1}} - {a^{alpha + 1}}). B. (intlimits_a^b {{x^alpha }dx} = alpha left( {{b^{alpha - 1}} - {a^{alpha - 1}}} right)). C. (intlimits_a^b {{x^alpha }dx} = frac{{{b^{alpha + 1}} - {a^{alpha + 1}}}}{{alpha + 1}}left( {alpha ne - 1} right)). D. (intlimits_a^b {{x^alpha }dx} = frac{{{b^{alpha + 1}} - {a^{alpha + 1}}}}{alpha }left( {alpha ne 0} right)).
Phát biểu nào sau đây là đúng? A. (intlimits_a^b {sin xdx} = sin a - sin b). B. (intlimits_a^b {sin xdx} = sin b - sin a). C. (intlimits_a^b {sin xdx} = cos a - cos b). D. (intlimits_a^b {sin xdx} = cos b - cos a).
Phát biểu nào sau đây là đúng? Biết (fleft( x right) = frac{1}{{{{sin }^2}x}}) liên tục trên (left[ {a;b} right]). A. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = cot a - cot b). B. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = cot b - cot a). C. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = tan a - tan b). D. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = tan b - tan a).
Phát biểu nào sau đây là đúng? A. (intlimits_a^b {{e^x}dx} = {e^{b + 1}} - {e^{a + 1}}). B. (intlimits_a^b {{e^x}dx} = {e^{a + 1}} - {e^{b + 1}}). C. (intlimits_a^b {{e^x}dx} = {e^b} - {e^a}). D. (intlimits_a^b {{e^x}dx} = {e^a} - {e^b}).
Tích phân (intlimits_a^b {frac{1}{x}dx} ) bằng: A. (ln b - ln a). B. (left| {ln b} right| - left| {ln a} right|). C. (ln left| b right| - ln left| a right|). D. (ln left| a right| - ln left| b right|).
Tích phân (intlimits_1^2 {frac{{ - 3}}{{{x^3}}}dx} ) có giá trị bằng: A. (frac{9}{8}). B. ( - frac{{45}}{{64}}). C. (frac{{15}}{8}). D. ( - frac{9}{8}).
Tích phân (intlimits_1^2 {frac{1}{{xsqrt x }}dx} ) có giá trị bằng: A. (2 - sqrt 2 ). B. (2 + sqrt 2 ). C. (frac{{ - sqrt 2 + 8}}{{20}}). D. (frac{{ - sqrt 2 - 8}}{{20}}).
Nếu (intlimits_0^1 {fleft( x right)dx} = 4) thì (intlimits_0^1 {2fleft( x right)dx} ) bằng: A. 16. B. 4. C. 2. D. 8.
Nếu (intlimits_1^2 {fleft( x right)dx} = - 2) và (intlimits_2^3 {fleft( x right)dx} = 1) thì (intlimits_1^3 {fleft( x right)dx} ) bằng: A. ‒3. B. ‒1. C. 1. D. 3.
Nếu (intlimits_2^3 {fleft( x right)dx} = 3) và (intlimits_2^3 {gleft( x right)dx} = 1) thì (intlimits_2^3 {left[ {fleft( x right) + gleft( x right)} right]dx} ) bằng: A. 4. B. 2. C. ‒2. D. 3.
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho (fleft( x right)) là hàm số có đạo hàm cấp hai liên tục trên đoạn (left[ {a;b} right]). a) (intlimits_{a}^{b}{f''left( x right)dx}=f'left( b right)-f'left( a right)). b) (intlimits_{a}^{b}{f''left( x right)dx}=fleft( b right)-fleft( a right)). c) (intlimits_{a}^{b}{f''left( x right)dx}=f'left( a right)-f'left( b right)). d) (intlimits_{a}^{b}{f''left( x right)dx}=fleft( a righ
Nêu một ví dụ chỉ ra rằng (intlimits_a^b {frac{{fleft( x right)}}{{gleft( x right)}}dx} ne frac{{intlimits_a^b {fleft( x right)dx} }}{{intlimits_a^b {gleft( x right)dx} }}) với (fleft( x right)) và (gleft( x right)) liên tục trên đoạn (left[ {a;b} right],gleft( x right) = 0,forall x in left[ {a;b} right]).
Cho (intlimits_{ - 1}^2 {gleft( x right)dx} = 6,Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên đoạn (left[ { - 1;2} right]) và (Gleft( { - 1} right) = 8). Tính (Gleft( 2 right)).
Cho (intlimits_{ - 2}^1 {fleft( x right)dx} = 5) và (intlimits_{ - 2}^1 {gleft( x right)dx} = - 4). Tính: a) (intlimits_1^{ - 2} {fleft( x right)dx} ); b) (intlimits_{ - 2}^1 { - 4fleft( x right)dx} ); c) (intlimits_{ - 2}^1 {frac{{ - 2gleft( x right)}}{3}dx} ); d) (intlimits_{ - 2}^1 {left[ {fleft( x right) + gleft( x right)} right]dx} ); e) (intlimits_{ - 2}^1 {left[ {fleft( x right) - gleft( x right)} right]dx} ); g) (intlimits_{ - 2}
Cho (intlimits_{ - 1}^3 {fleft( x right)dx} = 2,intlimits_2^3 {fleft( x right)dx} = - 5). Tính tích phân (intlimits_{ - 1}^2 {fleft( x right)dx} ).
Một ô tô đang chạy với vận tốc (18m/s) thì người lái ô tô đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc (vleft( t right) = - 6t + 18left( {m/s} right)), trong đó (t) là thời gian tính bằng giây. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô di chuyển được quãng đường bằng bao nhiêu mét?
Một vật chuyển động với vận tốc được cho bởi đồ thị ở Hình 3. a) Tính quãng đường mà vật di chuyển được trong 5 giây đầu tiên. b) Tính quãng đường mà vật di chuyển được từ thời điểm 1 giây đến 5 giây.