Tiệm cận đứng của đồ thị hàm số (y = frac{{3{rm{x}} + 1}}{{x - 2}}) là đường thẳng: A. (x = 2). B. (x = - frac{1}{3}). C. (y = 3). D. (y = frac{1}{3}).
Tiệm cận ngang của đồ thị hàm số (y = frac{{5{rm{x}} - 2}}{{x + 3}}) là đường thẳng: A. (x = - 3). B. (x = 5). C. (y = - 3). D. (y = 5).
Tiệm cận đứng, tiệm cận ngang của đồ thị hàm số \(y = \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}}\) là: A. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{1}{3}\). B. Tiệm cận đứng là đường thẳng \(x = \frac{7}{2}\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\). C. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{2}{3}\). D. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\).
Đồ thị hàm số nào sau đây nhận đường thẳng (x = - 1) làm tiệm cận đứng? A. (y = frac{{3{rm{x}} - 1}}{{{rm{x}} + 1}}). B. (y = frac{{2{rm{x}} + 1}}{{{rm{x}} - 1}}). C. (y = frac{{ - x + 1}}{{{rm{x}} - 2}}). D. (y = frac{{x + 1}}{{{rm{x}} - 2}}).
Tiệm cận xiên của đồ thị hàm số (y = 2x - 1 - frac{2}{{x + 1}}) là đường thẳng: A. (y = 2x). B. (y = x + 1). C. (y = 2x - 1). D. (y = - 2x + 1).
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ 1 right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Tiệm cận đứng của đồ thị hàm số là đường thẳng: A. (x = 1). B. (x = 2). C. (y = 1). D. (y = 2).
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = 2\) và tiệm cận ngang là đường thẳng \(x = - 2\). B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = - 2\) và tiệm cận ngang là đường thẳng \(x = 2\). C. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận ngang là đường
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ { - 2} right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và không có tiệm cận ngang. B. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và tiệm cận ngang là đường thẳng (y = 3). C. Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang là đường thẳng (y = - 2). D. Đồ thị hàm
Cho hàm số (y = fleft( x right)) liên tục trên (mathbb{R}) và đồ thị có đường tiệm cận ngang như Hình 10. Hàm số (y = fleft( x right)) có thể là hàm số nào trong các hàm số sau? A. (fleft( x right) = frac{{3{{rm{x}}^2}}}{{{x^2} + x + 1}}). B. (fleft( x right) = frac{{2{{rm{x}}^2}}}{{{x^2} + x + 1}}). C. (fleft( x right) = frac{{{{rm{x}}^2}}}{{{x^2} + x + 1}}). D. (fleft( x right) = frac{{{{rm{x}}^2}}}{{3{x^2} + x + 1}}).
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có đồ thị như Hình 11. Các đường tiệm cận của đồ thị hàm số là: A. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường thẳng \(y = - x\). B. Tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận xiên là đường thẳng \(y = x\). C. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường thẳng \(y = x\). D. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường th
Giao điểm (I) của hai đường tiệm cận của đồ thị hàm số (y = frac{{ - 5{rm{x}} + 3}}{x}) là: A. (Ileft( {1; - 5} right)). B. (Ileft( {0; - 5} right)). C. (Ileft( {0;5} right)). D. (Ileft( {1;5} right)).
Số đường tiệm cận của đồ thị hàm số (y = frac{{2{rm{x}}}}{{{x^2} - 4}}) là: A. 1. B. 2. C. 3. D. 0.
Số đường tiệm cận của đồ thị hàm số (y = frac{{{x^2} - 1}}{{{x^2} + 1}}) là: A. 1. B. 2. C. 3. D. 0.
Số đường tiệm cận của đồ thị hàm số (y = - x + 3 - frac{5}{{2x + 1}}) là: A. 1. B. 2. C. 3. D. 4.
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{{x^2} - 3}}{{ - x - 1}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = - 1). c) Đồ thị hàm số có tiệm cận xiên là đường thẳng (y = - x). d) Giao điểm (I) của hai đường tiệm cận của đồ thị hàm số là (Ileft( { - 1;1} right)).
Tìm tiệm cận đứng, tiệm cận ngang của đồ thị mỗi hàm số sau: a) (y = frac{{x - 1}}{{2{rm{x}} + 3}}); b) (y = - 3 + frac{5}{{x - 4}}); c) (y = frac{{3{rm{x}} - 7}}{{{x^2}}}); d) (y = frac{{ - 2{{rm{x}}^2} + 1}}{{{x^2} - 2{rm{x}} + 1}}).
Tìm tiệm cận đứng, tiệm cận xiên của đồ thị mỗi hàm số sau: a) (y = 5{rm{x}} - 2 + frac{1}{{x + 3}}); b) (y = - 7{rm{x}} + frac{{x - 1}}{{{x^2}}}); c) (y = frac{{{x^2} + 2{rm{x}}}}{{ - x + 2}}); d) (y = frac{{2{{rm{x}}^2} + 9{rm{x}}}}{{x + 1}});
Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau: a) (y = frac{{3{rm{x}} + 5}}{{{x^2} - 4}}); b) (y = frac{{ - {x^2} - 1}}{{4{{rm{x}}^2} + 9}}); c) (y = frac{{3{x^2} + x}}{{1 - x}}).
Tốc độ đánh máy trung bình (S) (tính bằng từ trên phút) của một học viên sau (t) tuần học được cho bởi công thức: (Sleft( t right) = frac{{100{t^2}}}{{65 + {t^2}}}) với (t > 0). a) Xem (y = Sleft( t right) = frac{{100{t^2}}}{{65 + {t^2}}}) là một hàm số xác định trên khoảng (left( {0; + infty } right)), hãy tìm tiệm cận ngang của đồ thị hàm số đó. b) Nêu nhận xét về tốc độ đánh máy trung bình của học viên đó khi thời gian (t) càng lớn.
Tổng chi phí để sản xuất (x) sản phẩm của một xí nghiệp được tính theo công thức (T = 20x + 100{rm{ }}000) (nghìn đồng). a) Viết công thức tính chi phí trung bình (Cleft( x right)) của 1 sản phẩm khi sản xuất được (x) sản phẩm. b) Xem (y = Cleft( x right)) là một hàm số xác định trên khoảng (left( {0; + infty } right)), hãy tìm tiệm cận ngang của đồ thị hàm số đó. c) Xét tính đơn điệu của hàm số (y = Cleft( x right)) trên khoảng (left( {0; + infty } right)).