Giải SBT Toán 12 bài tập cuối chương 5 trang 35, 36, 37, 38, 39, 40 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức


Bài 5.28 trang 35 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua (Aleft( {1;0; - 3} right)) và nhận vectơ (overrightarrow n = left( {2;1;1} right)) làm vectơ pháp tuyến là A. (2x + y + z - 1 = 0). B. (2x + y + z + 1 = 0) C. (x - 3z + 1 = 0). D. (x + 3z + 1 = 0).

Bài 5.29 trang 35 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, một vectơ chỉ phương của đường thẳng có phương trình (left{ begin{array}{l}x = 1 + 2t\y = 3 - 2t\z = - 2 + tend{array} right.) là A. (overrightarrow {{u_1}} = left( {1;3; - 2} right)). B. (overrightarrow {{u_2}} = left( {2; - 2;0} right)) C. (overrightarrow {{u_3}} = left( {2;2;1} right)). D. (overrightarrow {{u_4}} = left( {4; - 2;1} right)).

Bài 5.30 trang 35 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho mặt phẳng (left( P right):2x + 3y - z - 1 = 0) và điểm (Aleft( {1;2; - 1} right)). Phương trình chính tắc của đường thẳng d đi qua A và vuông góc với mặt phẳng (P) là A. (frac{{x + 1}}{2} = frac{{y + 2}}{3} = frac{{z - 1}}{{ - 1}}). B. (frac{{x - 1}}{2} = frac{{y - 2}}{3} = frac{{z + 1}}{{ - 1}}). C. (frac{{x - 1}}{1} = frac{{y - 2}}{2} = frac{{z + 1}}{{ - 1}}). D. (frac{{x + 1}}{1} = frac{{y + 2}}{2} = frac{{z - 1}}{{ - 1}}).

Bài 5.31 trang 36 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, côsin của góc giữa hai đường thẳng (Delta :left{ begin{array}{l}x = 1 + 2t\y = - 1 + t\z = - 2 + tend{array} right.) và (Delta ':frac{{x + 2}}{1} = frac{{y + 3}}{2} = frac{{z - 1}}{{ - 5}}) bằng A. (frac{{sqrt 5 }}{{30}}). B. (frac{{ - sqrt 5 }}{{30}}). C. (frac{{3sqrt 5 }}{{10}}). D. (frac{{ - 3sqrt 5 }}{{10}}).

Bài 5.32 trang 36 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, góc giữa đường thẳng (Delta :frac{{x + 3}}{1} = frac{{y + 1}}{{sqrt 2 }} = frac{{z + 2}}{1}) và mặt phẳng (Oxz) bằng A. ({45^ circ }). B. ({30^ circ }). C. ({60^ circ }). D. ({90^ circ }).

Bài 5.33 trang 36 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, phương trình mặt cầu (S) có tâm (Ileft( {1;2; - 1} right)) và (S) đi qua (Aleft( { - 1;1;0} right)) là A. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = sqrt 6 ). B. ({left( {x + 1} right)^2} + {left( {y + 2} right)^2} + {left( {z - 1} right)^2} = 6). C. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = 6). D. ({left( {x + 1} right)^2} + {left( {y - 1} righ

Bài 5.34 trang 36 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, phương trình ({x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0) là phương trình mặt cầu có tâm I và bán kính R lần lượt là A. (Ileft( { - 1;2;0} right);R = 2). B. (Ileft( {1; - 2;0} right);R = 2). C. (Ileft( { - 1;2;0} right);R = 4). D. (Ileft( {1; - 2;0} right);R = 4).

Bài 5.35 trang 36 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng chứa đường thẳng (Delta :left{ begin{array}{l}x = 1 + t\y = - 2 + 2t\z = 3 - tend{array} right.) và đi qua điểm (Aleft( {2; - 1;1} right)) là A. (overrightarrow {{n_1}} = left( {3; - 1;1} right)). B. (overrightarrow {{n_2}} = left( {3;1; - 1} right)). C. (overrightarrow {{n_3}} = left( {1; - 1;3} right)). D. (overrightarrow {{n_4}} = left( { - 1;3;1} right)).

Bài 5.36 trang 37 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, khoảng cách từ điểm (Aleft( { - 2;1;0} right)) đến mặt phẳng (left( P right):2x - 2y + z - 3 = 0) bằng A. 2. B. 6. C. 3. D. 9.

Bài 5.37 trang 37 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho hai đường thẳng: (Delta :left{ begin{array}{l}x = 1 - t\y = 2 + t\z = - 1 + 2tend{array} right.) và (Delta ':frac{{x - 2}}{2} = frac{{y - 1}}{1} = frac{{z + 3}}{{ - 3}}). Vị trí tương đối của hai đường thẳng này là A. chéo nhau. B. cắt nhau. C. song song. D. trùng nhau.

Bài 5.38 trang 37 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho ba điểm \(A\left( {2;3; - 1} \right),B\left( { - 1;2;0} \right)\) và \(C\left( {3;1;2} \right)\). a) Viết phương trình mặt phẳng (ABC). b) Viết phương trình tham số và phương trình chính tắc của đường thẳng AB.

Bài 5.39 trang 37 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho hai đường thẳng: \(\Delta :\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 2t\\z = - 1 + t\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x = - 1 + s\\y = 2 - s\\z = 3 + 2s\end{array} \right.\) a) Xét vị trí tương đối của hai đường thẳng \(\Delta \) và \(\Delta '\). b) Tính côsin của góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\). c) Viết phương trình đường thẳng d đi qua \(A\left( { - 3;2;2} \right)\) và song song với đường thẳng \(\Delta \).

Bài 5.40 trang 37 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho điểm \(I\left( {3; - 2; - 1} \right)\) và mặt phẳng \(\left( P \right):x - 2y - 2z + 3 = 0\). a) Tính khoảng cách từ điểm I đến mặt phẳng (P). b) Viết phương trình mặt cầu (S) có tâm I và (S) tiếp xúc với (P). c) Viết phương trình đường thẳng d đi qua I và d vuông góc với (P).

Bài 5.41 trang 37 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho đường thẳng (Delta :left{ begin{array}{l}x = 1 + t\y = 2t\z = - 1 - 2tend{array} right.) và mặt phẳng (left( P right):2x + y + z + 5 = 0). a) Tìm tọa độ giao điểm I của đường thẳng (Delta ) và mặt phẳng (P). b) Viết phương trình đường thẳng (Delta ') nằm trên mặt phẳng (P) đồng thời cắt (Delta ) và vuông góc với (Delta ). c) Tính góc giữa đường thẳng (Delta ) và mặt phẳng (P).

Bài 5.42 trang 38 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 3 + 2t\\y = - 2 + t\\z = 1 + 3t\end{array} \right.\) và \(\Delta ':\frac{{x + 2}}{3} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 2}}\). a) Chứng minh rằng hai đường thẳng \(\Delta \) và \(\Delta '\) chéo nhau. b) Viết phương trình mặt phẳng (P) chứa \(\Delta \) và song song với đường thẳng \(\Delta '\).

Bài 5.43 trang 38 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho mặt cầu (left( S right):{left( {x - 2} right)^2} + {left( {y + 1} right)^2} + {left( {z - 3} right)^2} = 9) và điểm (Aleft( {2; - 1;1} right)). a) Tìm tâm I và bán kính R của mặt cầu (S). b) Chứng minh rằng điểm A nằm trong mặt cầu (S). c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.

Bài 5.44 trang 38 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó. a) \({x^2} + {y^2} + {z^2} + 6x - 8z + 5 = 0\). b) \({x^2} + {y^2} + {z^2} - 4x + 6z + 17 = 0\). c) \(2{x^2} + 2{y^2} + 2{z^2} - 5 = 0\).

Bài 5.45 trang 38 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):2x + 2y - z + 8 = 0\) và \(\left( Q \right):2x + 2y - z + 2 = 0\). a) Chứng minh rằng \(\left( P \right)\parallel \left( Q \right)\). b) Tính khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Bài 5.46 trang 38 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho điểm \(P\left( {2;3;5} \right)\). Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm P trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).

Bài 5.47 trang 39 SBT toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho hai điểm (Aleft( {2; - 1; - 3} right)); (Bleft( {3;0; - 1} right)) và mặt phẳng (left( P right):x - 3y - z - 5 = 0). Viết phương trình mặt phẳng (Q) chứa hai điểm A, B đồng thời vuông góc với mặt phẳng (P).

Xem thêm

Cùng chủ đề:

Giải SBT Toán 12 bài 19 trang 43, 44, 45 - Kết nối tri thức
Giải SBT Toán 12 bài tập cuối chương 1 trang 33, 34, 35, 36, 37, 38 - Kết nối tri thức
Giải SBT Toán 12 bài tập cuối chương 2 trang 55, 56, 57, 58, 59 - Kết nối tri thức
Giải SBT Toán 12 bài tập cuối chương 3 trang 67, 68, 69, 70 - Kết nối tri thức
Giải SBT Toán 12 bài tập cuối chương 4 trang 19, 20, 21, 22 - Kết nối tri thức
Giải SBT Toán 12 bài tập cuối chương 5 trang 35, 36, 37, 38, 39, 40 - Kết nối tri thức
Giải SBT Toán 12 bài tập cuối chương 6 trang 45, 46, 47 - Kết nối tri thức
Giải SBT Toán 12 bài tập ôn tập cuối năm trang 47, 78, 49, 50, 51, 52, 53, 54, 55, 56, 57 - Kết nối tri thức
Giải SBT Toán 12 trang 57, 58, 59, 60, 61, 62, 63, 64, 65, 66 - Kết nối tri thức
Giải bài 1 trang 47 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 1 trang 8 sách bài tập toán 12 - Kết nối tri thức