Giải SBT Toán 12 bài tập cuối chương 4 trang 23, 24, 25, 26, 27 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo


Bài 1 trang 23 SBT toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Biết rằng \(f'\left( x \right) = 8{{\rm{x}}^3} - 4x + 2\) và \(f\left( 1 \right) = 4\). Hàm số \(f\left( x \right)\) là A. \(2{x^4} - 2{x^2} + x + 4\). B. \(2{x^4} - 2{x^2} + 2x + 2\). C. \(8{x^4} - 4{x^2} + x\). D. \(8{x^4} - 4{x^2} + x + 4\).

Bài 2 trang 23 SBT toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Hàm số \(y = f\left( x \right)\) có đồ thị đi qua điểm \(\left( {0;2} \right)\) và \(f'\left( x \right) = \cos x - \sin x\). Giá trị của \(f\left( \pi \right)\) là A. ‒1. B. 1. C. 4. D. 0.

Bài 3 trang 23 SBT toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Phát biểu nào sau đây đúng? A. (int {{3^{2{rm{x}}}}dx} = {9^x}.ln 9 + C). B. (int {{3^{2{rm{x}}}}dx} = frac{{{9^x}}}{{2ln 3}} + C). C. (int {{3^{2{rm{x}}}}dx} = {left( {frac{{{3^x}}}{{ln 3}}} right)^2} + C). D. (int {{3^{2{rm{x}}}}dx} = frac{{{3^{2x}}}}{{ln 3}} + C).

Bài 4 trang 23 SBT toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Cho hàm số \(f\left( x \right) = 4\sqrt[3]{x}\). Giá trị của \(\int\limits_1^3 {f\left( x \right)dx} - \int\limits_8^3 {f\left( x \right)dx} \) bằng A. 45. B. 80. C. 15. D. \(18\sqrt[3]{3} - 51\).

Bài 5 trang 23 SBT toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Cho hàm số (fleft( x right) = 3{rm{x}} - 1). Biết rằng ({rm{a}}) là số thoả mãn (intlimits_0^1 {{f^2}left( x right)dx} = a{left[ {intlimits_0^1 {fleft( x right)dx} } right]^2}). Giá trị của ({rm{a}}) là A. 2. B. (frac{1}{4}). C. 4. D. (frac{1}{2}).

Bài 6 trang 23 SBT toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Đồ thị của hàm số \(y = f\left( x \right)\) đi qua điểm \(\left( {1;1} \right)\) và có hệ số góc của tiếp tuyến tại các điểm \(\left( {x;f\left( x \right)} \right)\) là \(1 - 4x\). Giá trị của \(f\left( 3 \right)\) là A. ‒12. B. ‒13. C. ‒15. D. ‒30.

Bài 7 trang 24 SBT toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {1;3} \right]\) và thoả mãn \(\int\limits_1^3 {\left[ {3{x^2} - 2f'\left( x \right)} \right]dx} = 4;f\left( 1 \right) = - 2\). Giá trị \(f\left( 3 \right)\) là A. 9. B. 11. C. ‒13. D. 19.

Bài 8 trang 24 SBT toán 12 - Chân trời sáng tạo

Chọn đáp án đúng. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là A. 1. B. 3. C. \(2\ln 2 - 1\). D. \(3 - 4\ln 2\).

Bài 9 trang 24 SBT toán 12 - Chân trời sáng tạo

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (K) là một khoảng trên (mathbb{R}); (Fleft( x right)) là một nguyên hàm của hàm số (fleft( x right)) trên (K); (Gleft( x right)) là một nguyên hàm của hàm số (gleft( x right)) trên (K). a) Nếu (Fleft( x right) = Gleft( x right)) thì (fleft( x right) = gleft( x right)). b) Nếu (fleft( x right) = gleft( x right)) thì (Fleft( x right) = Gleft( x right)). c) (int {fleft( x right)dx} = Fleft( x r

Bài 10 trang 24 SBT toán 12 - Chân trời sáng tạo

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho (y = fleft( x right)) là hàm số bậc hai có đồ thị như Hình 1. Gọi (S) là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số (y = fleft( x right)) và trục hoành. a) (fleft( x right) = 4 - 2{x^2}). b) (S = intlimits_{ - 2}^2 {left| {fleft( x right)} right|dx} ). c) (S = intlimits_{ - 2}^2 {fleft( x right)dx} ). d) (S = frac{{16}}{3}).

Bài 1 trang 25 SBT toán 12 - Chân trời sáng tạo

Tiếp tuyến của đồ thị hàm số (y = fleft( x right)) tại điểm (left( {x;fleft( x right)} right)) có hệ số góc là (3{x^2} - 6x + 2). Tìm hàm số (y = fleft( x right)), biết đồ thị của nó đi qua điểm (left( { - 1;1} right)).

Bài 2 trang 25 SBT toán 12 - Chân trời sáng tạo

Tìm: a) (int {{{left( {3{rm{x}} - frac{1}{{{x^2}}}} right)}^2}dx} ); b) (int {left( {7{rm{x}}sqrt[3]{x} - frac{1}{{sqrt {{x^3}} }}} right)dx} left( {x > 0} right)); c) (int {{{left( {{3^{2{rm{x}}}} - 1} right)}^2}dx} ); d) (int {left( {2 - 3{{cos }^2}frac{x}{2}} right)dx} ).

Bài 3 trang 25 SBT toán 12 - Chân trời sáng tạo

Tính: a) (intlimits_1^2 {frac{{{x^4} + {x^3} + {x^2} + x + 1}}{{{x^2}}}dx} ); b) (intlimits_1^2 {frac{{x{e^x} + 1}}{x}dx} ); c) (intlimits_0^1 {frac{{{8^x} + 1}}{{{2^x} + 1}}dx} ); d) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {frac{{1 + {{sin }^2}x}}{{1 - {{cos }^2}x}}dx} ).

Bài 4 trang 25 SBT toán 12 - Chân trời sáng tạo

Cho hàm số (fleft( x right)) liên tục trên đoạn (left[ {0;5} right]). Tính (intlimits_0^5 {fleft( x right)dx} ), biết rằng (intlimits_0^3 {fleft( x right)dx} = 4;intlimits_1^5 {fleft( x right)dx} = 6;intlimits_1^3 {fleft( x right)dx} = 3).

Bài 5 trang 25 SBT toán 12 - Chân trời sáng tạo

Cho hàm số (y = fleft( x right)) có đồ thị như hình bên. Biết rằng đạo hàm (f'left( x right)) liên tục trên (mathbb{R}). Tính (intlimits_{ - 1}^1 {f'left( x right)dx} ).

Bài 6 trang 25 SBT toán 12 - Chân trời sáng tạo

Cho hàm số (fleft( x right)) liên tục trên (mathbb{R}), có đạo hàm (f'left( x right) = left{ begin{array}{l}4 - 3{{rm{x}}^2},x < 1\1 & ,x ge 1end{array} right.). Tính (fleft( 2 right) - fleft( 0 right)).

Bài 7 trang 26 SBT toán 12 - Chân trời sáng tạo

Cho hàm số (fleft( x right)) liên tục trên đoạn (left[ {0;frac{pi }{2}} right]) và thoả mãn (intlimits_0^{frac{pi }{2}} {left[ {3cos x + 2f'left( x right)} right]dx} = - 5;fleft( 0 right) = 1). Tính giá trị (fleft( {frac{pi }{2}} right)).

Bài 8 trang 26 SBT toán 12 - Chân trời sáng tạo

Cho (D) là hình phẳng giới hạn bởi đồ thị của hàm số (y = sqrt x ), trục hoành và đường thẳng (x = 4). Đường thẳng (x = aleft( {0 < a < 4} right)) chia (D) thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của (a).

Bài 9 trang 26 SBT toán 12 - Chân trời sáng tạo

Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị của hàm số (y = 1 + {x^2}), trục hoành và hai đường thẳng (x = - 1,x = 1) quanh trục (Ox).

Bài 10 trang 26 SBT toán 12 - Chân trời sáng tạo

Một cột bê tông hình trụ có chiều cao 9 m. Nếu cắt cột bê tông bằng mặt phẳng nằm ngang cách chân cột \(x\left( m \right)\) thì mặt cắt là hình tròn có bán kính \(1 - \frac{{\sqrt x }}{4}\left( m \right)\) với \(0 \le x \le 9\). Tính thể tích của cột bê tông (kết quả làm tròn đến hàng phần trăm của mét khối).

Xem thêm

Cùng chủ đề:

Giải SBT Toán 12 bài 3 trang 72, 73, 74, 75, 76, 77 - Chân trời sáng tạo
Giải SBT Toán 12 bài 4 trang 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 - Chân trời sáng tạo
Giải SBT Toán 12 bài tập cuối chương 1 trang 33, 34, 35, 36, 37, 38 - Chân trời sáng tạo
Giải SBT Toán 12 bài tập cuối chương 2 trang 77, 78, 79, 80, 81, 82 - Kết nối tri thức
Giải SBT Toán 12 bài tập cuối chương 3 trang 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116 - Chân trời sáng tạo
Giải SBT Toán 12 bài tập cuối chương 4 trang 23, 24, 25, 26, 27 - Chân trời sáng tạo
Giải SBT Toán 12 bài tập cuối chương 5 trang 61, 62, 63, 64, 65, 66 - Chân trời sáng tạo
Giải SBT Toán 12 bài tập cuối chương 6 trang 85, 86, 87, 88 - Chân trời sáng tạo
Giải bài 1 trang 8 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 10 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 1 trang 14 sách bài tập toán 12 - Chân trời sáng tạo